Evidence for radial anisotropy in the lower crust of the Apennines from Bayesian ambient noise tomography in Europe

被引:15
|
作者
Alder, C. [1 ]
Debayle, E. [1 ]
Bodin, T. [1 ]
Paul, A. [2 ]
Stehly, L. [2 ]
Pedersen, H. [2 ]
机构
[1] Univ Lyon 1, ENSL, Univ Lyon, CNRS,LGL TPE, F-69007 Lyon, France
[2] Univ Grenoble Alpes, Univ Savoie Mt Blanc, CNRS, IRD,IFSTTAR,ISTerre, F-38000 Grenoble, France
基金
欧洲研究理事会;
关键词
Europe; Seismic noise; Seismic anisotropy; Seismic tomography; Surface waves and free oscillations; SURFACE-WAVE TOMOGRAPHY; UPPER-MANTLE; WESTERN ALPS; VELOCITY ANOMALIES; INVERSE PROBLEMS; SLAB DETACHMENT; FORM TOMOGRAPHY; ALPINE REGION; BENEATH; SUBDUCTION;
D O I
10.1093/gji/ggab066
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Probing seismic anisotropy of the lithosphere provides valuable clues on the fabric of rocks. We present a 3-D probabilistic model of shear wave velocity and radial anisotropy of the crust and uppermost mantle of Europe, focusing on the mountain belts of the Alps and Apennines. The model is built from Love and Rayleigh dispersion curves in the period range 5-149 s. Data are extracted from seismic ambient noise recorded at 1521 broad-band stations, including the AlpArray network. The dispersion curves are first combined in a linearized least squares inversion to obtain 2-D maps of group velocity at each period. Love and Rayleigh maps are then jointly inverted at depth for shear wave velocity and radial anisotropy using a Bayesian Monte Carlo scheme that accounts for the trade-off between radial anisotropy and horizontal layering. The isotropic part of our model is consistent with previous studies. However, our anisotropy maps differ from previous large scale studies that suggested the presence of significant radial anisotropy everywhere in the European crust and shallow upper mantle. We observe instead that radial anisotropy is mostly localized beneath the Apennines while most of the remaining European crust and shallow upper mantle is isotropic. We attribute this difference to trade-offs between radial anisotropy and thin (hectometric) layering in previous studies based on least-squares inversions and long period data (>30 s). In contrast, our approach involves a massive data set of short period measurements and a Bayesian inversion that accounts for thin layering. The positive radial anisotropy (V-SH > V-SV) observed in the lower crust of the Apennines cannot result from thin layering. We rather attribute it to ductile horizontal flow in response to the recent and present-day extension in the region.
引用
收藏
页码:941 / 967
页数:27
相关论文
共 50 条
  • [31] The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography
    Zhou, Longquan
    Xie, Jiayi
    Shen, Weisen
    Zheng, Yong
    Yang, Yingjie
    Shi, Haixia
    Ritzwoller, Michael H.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 189 (03) : 1565 - 1583
  • [32] Structure of the crust and uppermost mantle beneath the Sicily Channel from ambient noise and earthquake tomography
    Kherchouche, Radia
    Ouyed, Merzouk
    Aoudia, Abdelkrim
    Melouk, Billel
    Saadi, Ahmed
    ANNALS OF GEOPHYSICS, 2020, 63 (06) : 1 - 35
  • [33] Structure of the Upper Crust beneath the Klyuchevskoy Group of Volcanoes Revealed from Ambient Noise Tomography
    Egorushkin, I. I.
    Koulakov, I. Yu
    Shapiro, N. M.
    Gordeev, E., I
    Yakovlev, A., V
    Abkadyrov, I. F.
    RUSSIAN GEOLOGY AND GEOPHYSICS, 2021, 62 (01) : 68 - 82
  • [34] The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography
    Fu, Yuanyuan V.
    Gao, Yuan
    Li, Aibing
    Lu, Laiyu
    Shi, Yutao
    Zhang, Yi
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 204 (03) : 1649 - 1661
  • [35] Direct Surface Wave Radial Anisotropy Tomography the Crust of the Eastern Himalayan Syntaxis
    Hu, Shaoqian
    Yao, Huajian
    Huang, Hui
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (05)
  • [36] Crust and upper mantle structure beneath southeast Australia from ambient noise and teleseismic tomography
    Rawlinson, N.
    Pilia, S.
    Young, M.
    Salmon, M.
    Yang, Y.
    TECTONOPHYSICS, 2016, 689 : 143 - 156
  • [37] Crustal Azimuthal Anisotropy in Eastern North China Derived from Ambient Noise Tomography
    Huang, Xiang
    Wang, Weitao
    Ding, Zhifeng
    SEISMOLOGICAL RESEARCH LETTERS, 2025, 96 (2A) : 1102 - 1116
  • [38] Crustal and Uppermost Mantle Azimuthal Seismic Anisotropy of Antarctica From Ambient Noise Tomography
    Zhou, Zhengyang
    Wiens, Douglas A.
    Nyblade, Andrew A.
    Aster, Richard C.
    Wilson, Terry
    Shen, Weisen
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2024, 129 (01)
  • [39] Radial anisotropy in the crust beneath Fujian and the Taiwan strait from direct surface-wave tomography
    Zhang, Yayun
    Yao, Huajian
    Xu, Min
    Liu, Bin
    TECTONOPHYSICS, 2022, 827
  • [40] Imaging Alpine crust using ambient noise wave-equation tomography
    Lu, Y.
    Stehly, L.
    Brossier, R.
    Paul, A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (01) : 69 - 85