Spatial Decay of the Vorticity Field of Time-Periodic Viscous Flow Past a Body

被引:2
|
作者
Eiter, Thomas [1 ]
Galdi, Giovanni P. [2 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
关键词
NAVIER-STOKES EQUATIONS; OSEEN;
D O I
10.1007/s00205-021-01690-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic spatial behavior of the vorticity field, omega(x, t), associated to a time-periodic Navier-Stokes flow past a body, B, in the class of weak solutions satisfying a Serrin-like condition. We show that, outside the wake region, R, omega decays pointwise at an exponential rate, uniformly in time. Moreover, denoting by (omega) over bar its time-average over a period and by omega P := omega - (omega) over bar its purely periodic component, we prove that inside R, (omega) over bar has the same algebraic decay as that known for the associated steady-state problem, whereas omega P decays even faster, uniformly in time. This implies, in particular, that "sufficiently far" from B, omega(x, t) behaves like the vorticity field of the corresponding steady-state problem.
引用
收藏
页码:149 / 178
页数:30
相关论文
共 50 条
  • [31] Vortices in time-periodic shear flow
    Kunnen, R.
    Trieling, R.
    van Heijst, G. J.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (1-4) : 315 - 322
  • [32] Ponomarenko dynamo with time-periodic flow
    Normand, C
    PHYSICS OF FLUIDS, 2003, 15 (06) : 1606 - 1611
  • [33] Vortices in time-periodic shear flow
    R. Kunnen
    R. Trieling
    G. J. van Heijst
    Theoretical and Computational Fluid Dynamics, 2010, 24 : 315 - 322
  • [34] MODEL OF TIME-PERIODIC MANTLE FLOW
    BUSSE, FH
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 52 (01): : 1 - 12
  • [35] PERIODIC-SOLUTIONS OF THE PROBLEM OF VISCOUS-FLUID FLOW PAST A BODY
    BABENKO, KI
    DOKLADY AKADEMII NAUK SSSR, 1982, 262 (06): : 1293 - 1298
  • [36] Time-Optimal Control Problem with State Constraints in a Time-Periodic Flow Field
    Chertovskih, Roman
    Khalil, Nathalie T.
    Pereira, Fernando Lobo
    OPTIMIZATION AND APPLICATIONS, OPTIMA 2019, 2020, 1145 : 340 - 354
  • [37] Viscous Flow Past a Periodic Array of Spheres
    Martynov, S. I.
    FLUID DYNAMICS, 2002, 37 (06) : 889 - 895
  • [38] Viscous Flow Past a Periodic Array of Spheres
    S. I. Martynov
    Fluid Dynamics, 2002, 37 : 889 - 895
  • [39] Time-periodic solution to the compressible viscous quantum magnetohydrodynamic model
    Ying Yang
    Yu Zhou
    Qiang Tao
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [40] Time-periodic solution to the compressible viscous quantum magnetohydrodynamic model
    Yang, Ying
    Zhou, Yu
    Tao, Qiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):