Limit set of a weakly supercritical contact process on a homogeneous tree

被引:0
|
作者
Lalley, SP [1 ]
Sellke, T [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
来源
ANNALS OF PROBABILITY | 1998年 / 26卷 / 02期
关键词
contact process; homogeneous tree; Hausdorff dimension;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A conjecture of Liggett concerning the regime of weak survival for the contact process on a homogeneous tree is proved. The conjecture is shown to imply that the Hausdorff dimension of the limit set of such a contact process is no larger than half the Hausdorff dimension of the space of ends of the tree. The conjecture is also shown to imply that at the boundary between weak survival and strong survival, the contact process survives only weakly, a theorem previously proved by Zhang. Finally, a stronger form of a theorem of Hawkes and Lyons concerning the Hausdorff dimension of a Galton-Watson tree is proved.
引用
收藏
页码:644 / 657
页数:14
相关论文
共 50 条
  • [21] Contact process in heterogeneous and weakly disordered systems
    Neugebauer, C. J.
    Fallert, S. V.
    Taraskin, S. N.
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [22] Scaling Limit of a Generalized Contact Process
    Chariker, Logan
    De Masi, Anna
    Lebowitz, Joel L. L.
    Presutti, Errico
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (03)
  • [23] Discrete SIR model on a homogeneous tree and its continuous limit
    Gairat, Alexander
    Shcherbakov, Vadim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (43)
  • [24] Some limit properties for Markov chains indexed by a homogeneous tree
    Yang, WG
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (03) : 241 - 250
  • [25] SCANNING RIGHT PROCESS ON HOMOGENEOUS RANDOM SET
    KAROUI, NE
    REINHARD, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (05): : 359 - 361
  • [26] Scaling of a random walk on a supercritical contact process
    den Hollander, F.
    dos Santos, R. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1276 - 1300
  • [27] Continuity of the asymptotic shape of the supercritical contact process
    Garet, Olivier
    Marchand, Regine
    Theret, Marie
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 11
  • [28] THE CONTACT PROCESS ON A FINITE-SET
    DURRETT, R
    LIU, XF
    ANNALS OF PROBABILITY, 1988, 16 (03): : 1158 - 1173
  • [29] The contact process on finite homogeneous trees revisited
    Cranston, Michael
    Mountford, Thomas
    Mourrat, Jean-Christophe
    Valesin, Daniel
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 385 - 408
  • [30] CONTACT-ANGLE HYSTERESIS ON A HETEROGENEOUS SURFACE - SOLUTION IN THE LIMIT OF A WEAKLY DISTORTED CONTACT LINE
    CRASSOUS, J
    CHARLAIX, E
    EUROPHYSICS LETTERS, 1994, 28 (06): : 415 - 420