Towards Consistent Visual-Inertial Navigation

被引:0
|
作者
Huang, Guoquan [1 ]
Kaess, Michael [2 ]
Leonard, John J. [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
关键词
OBSERVABILITY ANALYSIS; KALMAN FILTER; VISION; FUSION; LOCALIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual-inertial navigation systems (VINS) have prevailed in various applications, in part because of the complementary sensing capabilities and decreasing costs as well as sizes. While many of the current VINS algorithms undergo inconsistent estimation, in this paper we introduce a new extended Kalman filter (EKF)-based approach towards consistent estimates. To this end, we impose both state-transition and obervability constraints in computing EKF Jacobians so that the resulting linearized system can best approximate the underlying nonlinear system. Specifically, we enforce the propagation Jacobian to obey the semigroup property, thus being an appropriate state-transition matrix. This is achieved by parametrizing the orientation error state in the global, instead of local, frame of reference, and then evaluating the Jacobian at the propagated, instead of the updated, state estimates. Moreover, the EKF linearized system ensures correct observability by projecting the most-accurate measurement Jacobian onto the observable subspace so that no spurious information is gained. The proposed algorithm is validated by both Monte-Carlo simulation and real-world experimental tests.
引用
收藏
页码:4926 / 4933
页数:8
相关论文
共 50 条
  • [21] Robust Multispectral Visual-Inertial Navigation With Visual Odometry Failure Recovery
    Beauvisage, Axel
    Ahiska, Kenan
    Aouf, Nabil
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9089 - 9101
  • [22] Efficient and Consistent Two Key-Frame Visual-Inertial Navigation Using Matrix Lie Groups
    Thalagala, Ravindu G.
    De Silva, Oscar
    Mann, George K., I
    Gosine, Raymond G.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2023, 145 (01):
  • [23] Analytic IMU Preintegration That Associates Uncertainty on Matrix Lie Groups for Consistent Visual-Inertial Navigation Systems
    Tsao, Shu-Hua
    Jan, Shau-Shiun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (06) : 3819 - 3826
  • [24] GCMVF-AGV: Globally Consistent Multiview Visual-Inertial Fusion for AGV Navigation in Digital Workshops
    Zhang, Yinlong
    Li, Bo
    Sun, Shijie
    Liu, Yuanhao
    Liang, Wei
    Xia, Xiaofang
    Pang, Zhibo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] T-ESKF: Transformed Error-State Kalman Filter for Consistent Visual-Inertial Navigation
    Tian, Chungeng
    Hao, Ning
    He, Fenghua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (02): : 1808 - 1815
  • [26] The MADMAX data set for visual-inertial rover navigation on mars
    Meyer, Lukas
    Smisek, Michal
    Villacampa, Alejandro Fontan
    Maza, Laura Oliva
    Medina, Daniel
    Schuster, Martin J.
    Steidle, Florian
    Vayugundla, Mallikarjuna
    Mueller, Marcus G.
    Rebele, Bernhard
    Wedler, Armin
    Triebel, Rudolph
    JOURNAL OF FIELD ROBOTICS, 2021, 38 (06) : 833 - 853
  • [27] MOBILE ROBOT NAVIGATION USING MONOCULAR VISUAL-INERTIAL FUSION
    Cai, Jianxian
    Gao, Penggang
    Wu, Yanxiong
    Gao, Zhitao
    MECHATRONIC SYSTEMS AND CONTROL, 2021, 49 (01): : 36 - 40
  • [28] Efficient Visual-Inertial Navigation with Point-Plane Map
    Hu, Jiaxin
    Ren, Kefei
    Xu, Xiaoyu
    Zhou, Lipu
    Lang, Xiaoming
    Mao, Yinian
    Huang, Guoquan
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10659 - 10665
  • [29] Autonomous aerial navigation using monocular visual-inertial fusion
    Lin, Yi
    Gao, Fei
    Qin, Tong
    Gao, Wenliang
    Liu, Tianbo
    Wu, William
    Yang, Zhenfei
    Shen, Shaojie
    JOURNAL OF FIELD ROBOTICS, 2018, 35 (01) : 23 - 51
  • [30] Optimal-State-Constraint EKF for Visual-Inertial Navigation
    Huang, Guoquan
    Eckenhoff, Kevin
    Leonard, John
    ROBOTICS RESEARCH, VOL 1, 2018, 2 : 125 - 139