On the Optimal Convergence Probability of Univariate Estimation of Distribution Algorithms

被引:13
|
作者
Rastegar, Reza [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
EDA; PBIL; cGA; Markov process; submartingale; subregular functions; optimal convergence probability;
D O I
10.1162/EVCO_a_00022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we obtain bounds on the probability of convergence to the optimal solution for the compact genetic algorithm (cGA) and the population based incremental learning (PBIL). Moreover, we give a sufficient condition for convergence of these algorithms to the optimal solution and compute a range of possible values for algorithm parameters at which there is convergence to the optimal solution with a predefined confidence level.
引用
收藏
页码:225 / 248
页数:24
相关论文
共 50 条
  • [1] General Univariate Estimation-of-Distribution Algorithms
    Doerr, Benjamin
    Dufay, Marc
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT II, 2022, 13399 : 470 - 484
  • [2] Cooperative Coevolution and Univariate Estimation of Distribution Algorithms
    Vo, Christopher
    Panait, Liviu
    Luke, Sean
    [J]. FOGA'09: PROCEEDINGS OF THE 10TH ACM SIGRVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2009, : 141 - 150
  • [3] On the model updating operators in univariate estimation of distribution algorithms
    Andrey G. Bronevich
    José Valente de Oliveira
    [J]. Natural Computing, 2016, 15 : 335 - 354
  • [4] On the model updating operators in univariate estimation of distribution algorithms
    Bronevich, Andrey G.
    de Oliveira, Jose Valente
    [J]. NATURAL COMPUTING, 2016, 15 (02) : 335 - 354
  • [5] On the convergence of a class of estimation of distribution algorithms
    Zhang, QF
    Mühlenbein, H
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (02) : 127 - 136
  • [6] ASYMPTOTIC DISTRIBUTION AND CONVERGENCE RATES OF STOCHASTIC ALGORITHMS FOR ENTROPIC OPTIMAL TRANSPORTATION BETWEEN PROBABILITY MEASURES
    Bercu, Bernard
    Bigot, Jeremie
    [J]. ANNALS OF STATISTICS, 2021, 49 (02): : 968 - 987
  • [7] Avoiding premature convergence in Estimation of Distribution Algorithms
    delaOssa, Luis
    Gamez, Jose A.
    Mateo, Juan L.
    Puerta, Jose M.
    [J]. 2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 455 - 462
  • [8] A Restart Univariate Estimation of Distribution Algorithm: Sampling under Mixed Gaussian and Levy probability Distribution
    Wang, Yu
    Li, Bin
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3917 - 3924
  • [9] Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes
    Lehre, Per Kristian
    Nguyen, Phan Trung Hai
    [J]. ALGORITHMICA, 2021, 83 (10) : 3238 - 3280
  • [10] Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes
    Per Kristian Lehre
    Phan Trung Hai Nguyen
    [J]. Algorithmica, 2021, 83 : 3238 - 3280