Prediction of long-range-dependent discrete-time fractional Brownian motion process

被引:0
|
作者
Yao, L [1 ]
Doroslovacki, M [1 ]
机构
[1] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA
来源
2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: SIGNAL PROCESSING FOR COMMUNICATIONS SPECIAL SESSIONS | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an approach to linear minimum-mean-square-error (MMSE) prediction of a discrete-time fractional Brownian motion (dt-fBm) traffic arrival process, a long range dependent traffic model that well represents the characteristics of observed Internet traces. Linear multi-step forecasts of the future values of the dt-fBm process and the Corresponding prediction errors are first derived. We then proposed sliding window finite-memory predictors suitable for the practical implementation. Simulations using real-life traffic traces are performed to compare the proposed finite-memory dt-fBm predictors with fractional auto-regressive integrated moving average predictors and an empirical predictor. We find that the multi-scale sliding window dt-fBm predictor achieves best performance on forecasting the future traffic level.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 50 条
  • [31] Analysis of a discrete-time queue with load dependent service under discrete-time Markovian arrival process
    Gupta, U. C.
    Samanta, S. K.
    Goswami, V.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (04) : 545 - 557
  • [32] Analysis of a discrete-time queue with load dependent service under discrete-time Markovian arrival process
    U. C. Gupta
    S. K. Samanta
    V. Goswami
    Journal of the Korean Statistical Society, 2014, 43 : 545 - 557
  • [33] HURST INDEX OF FUNCTIONS OF LONG-RANGE-DEPENDENT MARKOV CHAINS
    Oguz, Barlas
    Anantharam, Venkat
    JOURNAL OF APPLIED PROBABILITY, 2012, 49 (02) : 451 - 471
  • [34] Simulation of nonGaussian long-range-dependent traffic using wavelets
    Ribeiro, VJ
    Riedi, RH
    Crouse, MS
    Baraniuk, RG
    PERFORMANCE EVALUATION REVIEW, SPECIAL ISSUE, VOL 27 NO 1, JUNE 1999: ACM SIGMETRICS '99, PROCEEDINGS - INTERNATIONAL CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER SYSTEMS, 1999, : 1 - 12
  • [35] On the approximate discrete KLT of fractional Brownian motion and applications
    Gupta, Anubha
    Joshi, Shiv Dutt
    Singh, Pushpendra
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (17): : 8989 - 9016
  • [36] Fractional Discrete-Time Signal Processing: Scale Conversion and Linear Prediction
    Manuel D. Ortigueira
    Carlos J. C. Matos
    Moisés S. Piedade
    Nonlinear Dynamics, 2002, 29 : 173 - 190
  • [37] Fractional discrete-time signal processing: Scale conversion and linear prediction
    Ortigueira, MD
    Matos, CJC
    Piedade, MS
    NONLINEAR DYNAMICS, 2002, 29 (1-4) : 173 - 190
  • [39] On the eigenvalue process of a matrix fractional Brownian motion
    Nualart, David
    Perez-Abreu, Victor
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (12) : 4266 - 4282
  • [40] On the application of fractional Brownian motion in insurance as a modelling tool for long range dependence.
    Frangos, N.
    Vrontos, Spyridon
    Yannacopoulos, A.
    INSURANCE MATHEMATICS & ECONOMICS, 2006, 39 (03): : 403 - 403