Bayesian latent variable models for median regression on multiple outcomes

被引:0
|
作者
Dunson, DB
Watson, M
Taylor, JA
机构
[1] NIEHS, Biostat Branch, Res Triangle Pk, NC 27709 USA
[2] NIEHS, Epidemiol Branch, Res Triangle Pk, NC 27709 USA
关键词
comet assay; factor analysis; measurement error; multivariate response; repeated measures; semiparametric; single-cell electrophoresis; substitution likelihood;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Often a response of interest cannot be measured directly and it is necessary to rely on multiple surrogates, which can be assumed to be conditionally independent given the latent response and observed covariates. Latent response models typically assume that residual densities are Gaussian. This article proposes a Bayesian median regression modeling approach, which avoids parametric assumptions about residual densities by relying on an approximation based on quantiles. To accommodate within-subject dependency, the quantile response categories of the surrogate outcomes are related to underlying normal variables, which depend on a latent normal response. This underlying Gaussian covariance structure simplifies interpretation and model fitting, without restricting the marginal densities of the surrogate outcomes. A Markov chain Monte Carlo algorithm is proposed for posterior computation, and the methods are applied to single-cell electrophoresis (comet assay) data from a genetic toxicology study.
引用
下载
收藏
页码:296 / 304
页数:9
相关论文
共 50 条
  • [21] Opaque Prior Distributions in Bayesian Latent Variable Models
    Merkle, Edgar C.
    Ariyo, Oludare
    Winter, Sonja D.
    Garnier-Villarreal, Mauricio
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2023, 19 (03) : 228 - 255
  • [22] Bayesian Regularized Multivariate Generalized Latent Variable Models
    Feng, Xiang-Nan
    Wu, Hao-Tian
    Song, Xin-Yuan
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2017, 24 (03) : 341 - 358
  • [23] Latent Factor Regression Models for Grouped Outcomes
    Woodard, D. B.
    Love, T. M. T.
    Thurston, S. W.
    Ruppert, D.
    Sathyanarayana, S.
    Swan, S. H.
    BIOMETRICS, 2013, 69 (03) : 785 - 794
  • [24] INTERPRETATION OF LATENT-VARIABLE REGRESSION-MODELS
    KVALHEIM, OM
    KARSTANG, TV
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1989, 7 (1-2) : 39 - 51
  • [25] Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies
    Xu, Lizhen
    Paterson, Andrew D.
    Xu, Wei
    GENETIC EPIDEMIOLOGY, 2017, 41 (03) : 221 - 232
  • [26] Bayesian first order auto-regressive latent variable models for multiple binary sequences
    Giardina, Federica
    Guglielmi, Alessandra
    Quintana, Fernando A.
    Ruggeri, Fabrizio
    STATISTICAL MODELLING, 2011, 11 (06) : 471 - 488
  • [27] Bayesian latent factor regression for multivariate functional data with variable selection
    Noh, Heesang
    Choi, Taeryon
    Park, Jinsu
    Chung, Yeonseung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (03) : 901 - 923
  • [28] Bayesian latent factor regression for multivariate functional data with variable selection
    Heesang Noh
    Taeryon Choi
    Jinsu Park
    Yeonseung Chung
    Journal of the Korean Statistical Society, 2020, 49 : 901 - 923
  • [29] Bayesian structured variable selection in linear regression models
    Wang, Min
    Sun, Xiaoqian
    Lu, Tao
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 205 - 229
  • [30] Bayesian Auxiliary Variable Models for Binary and Multinomial Regression
    Holmes, Chris C.
    Held, Leonhard
    BAYESIAN ANALYSIS, 2006, 1 (01): : 145 - 168