MULTI-OBJECTIVE OPTIMIZATION OF AMBULANCE LOCATION IN ANTOFAGASTA, CHILE

被引:3
|
作者
Olivos, Carlos [1 ]
Caceres, Hernan [1 ]
机构
[1] Univ Catolica Norte, Dept Ind Engn, Antofagasta, Chile
关键词
ambulance location; multi-objective optimization; multi-criteria decision-making; emergency medical service; Chile; RESPONSE-TIME; FACILITY LOCATION; GOLDEN HOUR; NEW-YORK; SURVIVAL; SERVICE; DEPLOYMENT; EFFICIENT; INTERVALS; MODEL;
D O I
10.3846/transport.2022.17073
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
In this paper, we solved an ambulance location problem with a multi-objective framework considering the case of the study of Emergency Medical Service (EMS) of Antofagasta (Chile). Nowadays, in Antofagasta, the ambulances are located in bases that are not necessarily the optimal location achieving an estimated 67% of coverage under the 8 min not meeting the requirements dictated by the Chilean Ministry of Health. We used a multi-objective model considering mean response time, maximum response time, and the demand not covered. The model is solved using an iterative epsilon-constraint method to generate a Pareto set of efficient solutions. We considered historical data from the years 2015 and 2016 to gen-erate the demand and emergency nodes with a clustering algorithm. The results show improvements on all criteria of the multi-objective model, where we highlight a potential increment on coverage within 8 min from 67 to 99%. In order to test the new policy in a real setting, a pilot plan is proposed, which reaches 89% of coverage within 8 min.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [21] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [22] Multi-Objective A* Algorithm for the Multimodal Multi-Objective Path Planning Optimization
    Jin, Bo
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1704 - 1711
  • [23] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [24] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [25] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [26] Splitting for Multi-objective Optimization
    Qibin Duan
    Dirk P. Kroese
    Methodology and Computing in Applied Probability, 2018, 20 : 517 - 533
  • [27] Multi-objective Whale Optimization
    Kumawat, Ishwar Ram
    Nanda, Satyasai Jagannath
    Maddila, Ravi Kumar
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2747 - 2752
  • [28] Evolutionary Multi-Objective Optimization
    Deb, Kalyanmoy
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2577 - 2602
  • [29] Multi-objective optimization (MO)
    Balling, RJ
    OPTIMAIZATION IN INDUSTRY, 2002, : 337 - 338
  • [30] Splitting for Multi-objective Optimization
    Duan, Qibin
    Kroese, Dirk P.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (02) : 517 - 533