Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy

被引:66
|
作者
Levitas, Valery I. [1 ,2 ,3 ]
Javanbakht, Mandi [2 ]
机构
[1] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Martensitic phase transformation; Phase field approach; Interface energy and width; Twinning; Nanostructure; SHAPE-MEMORY ALLOYS; STRESS; SIZE; NANOPARTICLES; DISLOCATIONS; DYNAMICS; MODEL;
D O I
10.3139/146.110529
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A generalization of the phase-field theory for multivariant martensitic phase transformations is suggested that allows one to vary martensite-martensite interface energy independent of energy for austenite-martensite interfaces. The finite element method is utilized to solve the coupled phase-field and elasticity equations. Width and energy of the austenite-martensite interfaces are determined. Splitting of the martensite-martensite interface into two austenite-martensite interfaces, leading to barrierless austenite nucleation, is obtained. The effect of the martensite-martensite interface energy and grain size on the stationary and non-stationary nanostructure inside the transforming grain embedded in the austenitic matrix is determined. Some nano-structures differ essentially from the prediction of crystallographic theory. Relationships between the number of twins in grain vs. grain size, and width of twin vs. its length are found. Two unexpected stress-relaxation mechanisms at the boundary of transforming grain are revealed.
引用
收藏
页码:652 / 665
页数:14
相关论文
共 50 条
  • [21] A phase-field study of the physical concepts of martensitic transformations in steels
    Yeddu, Hemantha Kumar
    Borgenstam, Annika
    Hedstrom, Peter
    Agren, John
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 538 : 173 - 181
  • [22] Study of Thermoelastic Martensitic Transformations Using a Phase-Field Model
    Man, Jiao
    Zhang, Jihua
    Rong, Yonghua
    Zhou, Ning
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (05): : 1154 - 1164
  • [23] PHASE TRANSFORMATIONS OF ELECTROLYTIC AUSTENITE AND MARTENSITE POWDERS
    KLYACHKO, YA
    BARANOVA, GK
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1968, 25 (03): : 207 - &
  • [24] Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel
    Thiessen, R. G.
    Sietsma, J.
    Palmer, T. A.
    Elmer, J. W.
    Richardson, I. M.
    ACTA MATERIALIA, 2007, 55 (02) : 601 - 614
  • [25] Simulation of dislocation recovery in lath martensite steels using the phase-field method
    Furukawa, Sho
    Ihara, Hiroto
    Murata, Yoshinori
    Tsukada, Yuhki
    Koyama, Toshiyuki
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 119 : 108 - 113
  • [26] Phase-field simulation of stress-induced martensitic phase transformations at large strains
    Levin, Vladimir A.
    Levitas, Valery I.
    Zingerman, Konstantin M.
    Freiman, Eugene I.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (19) : 2914 - 2928
  • [27] Reverse phase transformation of martensite to austenite in stainless steels: a 3D phase-field study
    Yeddu, Hemantha Kumar
    Lookman, Turab
    Saxena, Avadh
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (10) : 3642 - 3651
  • [28] Reverse phase transformation of martensite to austenite in stainless steels: a 3D phase-field study
    Hemantha Kumar Yeddu
    Turab Lookman
    Avadh Saxena
    Journal of Materials Science, 2014, 49 : 3642 - 3651
  • [29] MARTENSITE TRANSFORMATIONS AND A PHASE-DIAGRAM OF SOLID METHANE
    GASAN, VM
    BEZUGLYI, PA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1984, 27 (03): : 58 - 64
  • [30] NEW PHASE NUCLEATION AT DISLOCATIONS DURING MARTENSITE TRANSFORMATIONS
    ROITBURD, AL
    DOKLADY AKADEMII NAUK SSSR, 1981, 256 (01): : 80 - 84