Estimating east Mediterranean forest parameters using Landsat ETM

被引:11
|
作者
Alrababah, M. A. [1 ]
Alhamad, M. N. [1 ]
Bataineh, A. L. [2 ]
Bataineh, M. M. [1 ]
Suwaileh, A. F. [1 ]
机构
[1] Jordan Univ Sci & Technol, Fac Agr, Dept Nat Resources & Environm, Irbid 22110, Jordan
[2] Stephen F Austin State Univ, Arthur Temple Coll Forestry & Agr, SFA Stn, Nacogdoches, TX 75962 USA
关键词
AVHRR; BIOMASS; COVER; CLASSIFICATION; VEGETATION; VARIABILITY; INVENTORY; IMAGERY;
D O I
10.1080/01431160903573235
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The conservation of Jordan's Mediterranean forest requires the use of remote sensing. Among the most important parameters needed are the crown-cover percentage (C) and above-ground biomass (A). This study aims to: (1) identify the best predictor(s) of C using Landsat Enhanced Thematic Mapper (ETM) bands and the derived transformed normalized difference vegetation index (TNDVI); (2) determine if C is a good predictor of A, volume (V), Shannon diversity index (S) and basal area (B); and (3) generate maps of all these parameters. A Landsat ETM image, aerial photographs and ground surveys are used to model C using multiple regression. C is then modelled to A, V, S and B using linear regression. The relationship between C and Landsat ETM bands (1 and 7) plus the TNDVI is significantly high (coefficient of determination R-2 = 0.8) and is used to produce the C map. The generated C map is used to predict A (R-2 = 0.56), V (R-2 = 0.58), S (R-2 = 0.50) and B (R-2 = 0.43). Cross validation for the predicted C map (cross-validation error = 5.3%) and for the predicted forest-parameter maps (cross-validation error 13.7%-19.9%) shows acceptable error levels. Results indicate that Jordan's east Mediterranean forest parameters can be mapped and monitored for biomass accumulation and carbon dioxide (CO2) flux using Landsat ETM images.
引用
收藏
页码:1561 / 1574
页数:14
相关论文
共 50 条
  • [21] Modeling forest stand attributes using Landsat ETM plus and QuickBird satellite images in western Turkey
    Gunlu, Alkan
    Kadiogullari, Ali Ihsan
    BOSQUE, 2018, 39 (01): : 49 - 59
  • [22] Maintenance of ecosystem nitrogen limitation by ephemeral forest disturbance: An assessment using MODIS, Hyperion, and Landsat ETM
    McNeil, Brenden E.
    de Beurs, Kirsten M.
    Eshleman, Keith N.
    Foster, Jane R.
    Townsend, Philip A.
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (19)
  • [23] Spatial and temporal modelling of aboveground carbon stocks using Landsat TM and ETM plus for a subboreal forest
    Janzen, Darren T.
    Bois, Claudette H.
    Sanborn, Paul T.
    Wheate, Roger D.
    Fredeen, Arthur L.
    CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 (04) : 374 - 390
  • [24] A robust approach for estimating LAI from Landsat TM/ETM plus imagery
    Butson, C
    Fernandes, R
    Latifovic, R
    Chen, WJ
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 2328 - 2330
  • [25] Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM plus data
    Melaas, Eli K.
    Friedl, Mark A.
    Zhu, Zhe
    REMOTE SENSING OF ENVIRONMENT, 2013, 132 : 176 - 185
  • [26] Forest cover classification using Landsat ETM plus data and time series MODIS NDVI data
    Jia, Kun
    Liang, Shunlin
    Zhang, Lei
    Wei, Xiangqin
    Yao, Yunjun
    Xie, Xianhong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 33 : 32 - 38
  • [27] Investigation of the hydrothermal alterations by using Landsat 7 ETM
    Kayadibi, Onder
    TURKIYE JEOLOJI BULTENI-GEOLOGICAL BULLETIN OF TURKEY, 2015, 58 (02): : 29 - 54
  • [28] Forest site classification using Landsat 7 ETM data: A case study of Ma‡ka-Ormanustu forest, Turkey
    Gunlu, Alkan
    Baskent, Emin Zeki
    Kadiogullari, Ali Ihsan
    Altun, Lokman
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2009, 151 (1-4) : 93 - 104
  • [29] Using the Priestley-Taylor expression for estimating actual evapotranspiration from satellite Landsat ETM plus data
    Khaldi, Abdelkrim
    Khaldi, Abdelkader
    Hamimed, Abderrahmane
    EVOLVING WATER RESOURCES SYSTEMS: UNDERSTANDING, PREDICTING AND MANAGING WATER-SOCIETY INTERACTIONS, 2014, 364 : 398 - 403
  • [30] Object-based forest biomass estimation using Landsat ETM plus in Kampong Thom Province, Cambodia
    Kajisa, Tsuyoshi
    Murakami, Takuhiko
    Mizoue, Nobuya
    Top, Neth
    Yoshida, Shigejiro
    JOURNAL OF FOREST RESEARCH, 2009, 14 (04) : 203 - 211