Estimating east Mediterranean forest parameters using Landsat ETM

被引:11
|
作者
Alrababah, M. A. [1 ]
Alhamad, M. N. [1 ]
Bataineh, A. L. [2 ]
Bataineh, M. M. [1 ]
Suwaileh, A. F. [1 ]
机构
[1] Jordan Univ Sci & Technol, Fac Agr, Dept Nat Resources & Environm, Irbid 22110, Jordan
[2] Stephen F Austin State Univ, Arthur Temple Coll Forestry & Agr, SFA Stn, Nacogdoches, TX 75962 USA
关键词
AVHRR; BIOMASS; COVER; CLASSIFICATION; VEGETATION; VARIABILITY; INVENTORY; IMAGERY;
D O I
10.1080/01431160903573235
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The conservation of Jordan's Mediterranean forest requires the use of remote sensing. Among the most important parameters needed are the crown-cover percentage (C) and above-ground biomass (A). This study aims to: (1) identify the best predictor(s) of C using Landsat Enhanced Thematic Mapper (ETM) bands and the derived transformed normalized difference vegetation index (TNDVI); (2) determine if C is a good predictor of A, volume (V), Shannon diversity index (S) and basal area (B); and (3) generate maps of all these parameters. A Landsat ETM image, aerial photographs and ground surveys are used to model C using multiple regression. C is then modelled to A, V, S and B using linear regression. The relationship between C and Landsat ETM bands (1 and 7) plus the TNDVI is significantly high (coefficient of determination R-2 = 0.8) and is used to produce the C map. The generated C map is used to predict A (R-2 = 0.56), V (R-2 = 0.58), S (R-2 = 0.50) and B (R-2 = 0.43). Cross validation for the predicted C map (cross-validation error = 5.3%) and for the predicted forest-parameter maps (cross-validation error 13.7%-19.9%) shows acceptable error levels. Results indicate that Jordan's east Mediterranean forest parameters can be mapped and monitored for biomass accumulation and carbon dioxide (CO2) flux using Landsat ETM images.
引用
收藏
页码:1561 / 1574
页数:14
相关论文
共 50 条
  • [1] Estimating forest parameters using Landsat ETM plus spectral responses and monocultured plantation fieldwork measurements data
    Reuveni, Yuval
    Dahan, Erez
    Anker, Yaakov
    Sprintsin, Michael
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (08) : 2620 - 2636
  • [2] Estimating time since forest harvest using segmented Landsat ETM+ imagery
    Wulder, AA
    Skakun, RS
    Kurz, WA
    White, JC
    REMOTE SENSING OF ENVIRONMENT, 2004, 93 (1-2) : 179 - 187
  • [3] Mapping forest parameters using decision trees and multitemporal landsat ETM plus data
    Vikhamar, D
    Fjone, G
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2365 - 2368
  • [4] Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method
    Chrysafis, Irene
    Mallinis, Giorgos
    Gitas, Ioannis
    Tsakiri-Strati, Maria
    REMOTE SENSING OF ENVIRONMENT, 2017, 199 : 154 - 166
  • [5] Integration of lidar and Landsat ETM plus data for estimating and mapping forest canopy height
    Hudak, AT
    Lefsky, MA
    Cohen, WB
    Berterretche, M
    REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) : 397 - 416
  • [6] Estimating snow albedo patterns in a Mediterranean site from Landsat TM and ETM plus images
    Pimentel, Rafael
    Herrero, Javier
    Jose Polo, Maria
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XV, 2013, 8887
  • [7] A strategy for analyzing urban forest using landsat ETM plus imagery
    Huang, Chudong
    Shao, Yun
    Chen, Jinsong
    Liu, Jinghui
    Chen, Jieqiong
    Li, Jing
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1990 - +
  • [8] Estimating regional forest cover in East Texas using enhanced thematic mapper (ETM plus) data
    Sivanpillai, R
    Smith, CT
    Srinivasan, R
    Messina, MG
    Ben Wu, X
    FOREST ECOLOGY AND MANAGEMENT, 2005, 218 (1-3) : 342 - 352
  • [9] Large area forest inventory using Landsat ETM plus : A geostatistical approach
    Meng, Qingmin
    Cieszewski, Chris
    Madden, Marguerite
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (01) : 27 - 36
  • [10] Estimation of Mediterranean forest attributes by the application of k-NN procedures to multitemporal Landsat ETM plus images
    Maselli, F
    Chirici, G
    Bottai, L
    Corona, P
    Marchetti, M
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (17) : 3781 - 3796