Symbolic classification, clustering and fuzzy radial basis function network

被引:28
|
作者
Mali, K
Mitra, S
机构
[1] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, W Bengal, India
[2] Kalyani Univ, Dept Comp Sci, Kalyani 741235, W Bengal, India
关键词
radial basis function network; fuzzy clustering; symbolic object; symbolic classification; fuzzy classification; validity index;
D O I
10.1016/j.fss.2004.10.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Symbolic fuzzy classification is proposed using fuzzy radial basis function network, with fuzzy c-medoids clustering at the hidden layer. Symbolic objects include linguistic, nominal, boolean and interval-type of features, along with quantitative attributes. Classification and clustering in this domain involve the use of symbolic dissimilarity between the objects. Fuzzy memberships are used for appropriately handling uncertainty inherent in real-life decisions. The fuzzy radial basis function (FRBF) network here comprises an integration of the principles of radial basis function (RBF) network and fuzzy c-medoids clustering, for handling non-numeric data. The optimal number of hidden nodes is determined by using clustering validity indices, like normalized modified Hubert's statistic and Davies-Bouldin index, in the symbolic framework. The effectiveness of the symbolic fuzzy classification is demonstrated on real-life benchmark data sets. Comparison is provided with the performance of a decision tree. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:553 / 564
页数:12
相关论文
共 50 条
  • [21] An enhanced clustering function approximation technique for a radial basis function neural network
    Pomares, H.
    Rojas, I.
    Awad, M.
    Valenzuela, O.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 286 - 302
  • [22] RADIAL BASIS FUNCTION NETWORK FOR SPEECH PATTERN-CLASSIFICATION
    RENALS, S
    [J]. ELECTRONICS LETTERS, 1989, 25 (07) : 437 - 439
  • [23] Modified Radial Basis Function Network for Brain Tumor Classification
    Deepa, S. N.
    Devi, B. Aruna
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I, 2011, 7076 : 366 - 371
  • [24] Fabric defect classification using radial basis function network
    Zhang, Yu
    Lu, Zhaoyang
    Li, Jing
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 2033 - 2042
  • [25] An Accelerator for Classification using Radial Basis Function Neural Network
    Mohammadi, Mahnaz
    Ronge, Rohit
    Chandiramani, Jayesh Ramesh
    Nandy, Soumitra
    [J]. 2015 28TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2015, : 137 - 142
  • [26] Pattern Classification Based On Radial Basis Function Neural Network
    Zhang, Zhongwei
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA 2020), 2020, : 213 - 216
  • [27] A radial basis function network oriented for infant cry classification
    Ortiz, SDC
    Beceiro, DIE
    Ekkel, T
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 374 - 380
  • [28] Classification of Arabic Documents by a Model of Fuzzy Proximity with a Radial Basis Function
    Zaki, Taher
    Mammass, Driss
    Ennaji, Abdellatif
    Nouboud, F.
    [J]. INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2010, 3 (04): : 31 - 41
  • [29] Scale-based clustering using the radial basis function network
    Chakravarthy, SV
    Ghosh, J
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (05): : 1250 - 1261
  • [30] Design and Implementation of Radial Basis Function Network Based on Clustering Algorithm
    Zhen, Zhilong
    Wang, Haijuan
    Zhu, Yao
    [J]. ICFCSE 2011: 2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SUPPORTED EDUCATION, VOL 2, 2011, : 1 - 4