Symbolic classification, clustering and fuzzy radial basis function network

被引:28
|
作者
Mali, K
Mitra, S
机构
[1] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, W Bengal, India
[2] Kalyani Univ, Dept Comp Sci, Kalyani 741235, W Bengal, India
关键词
radial basis function network; fuzzy clustering; symbolic object; symbolic classification; fuzzy classification; validity index;
D O I
10.1016/j.fss.2004.10.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Symbolic fuzzy classification is proposed using fuzzy radial basis function network, with fuzzy c-medoids clustering at the hidden layer. Symbolic objects include linguistic, nominal, boolean and interval-type of features, along with quantitative attributes. Classification and clustering in this domain involve the use of symbolic dissimilarity between the objects. Fuzzy memberships are used for appropriately handling uncertainty inherent in real-life decisions. The fuzzy radial basis function (FRBF) network here comprises an integration of the principles of radial basis function (RBF) network and fuzzy c-medoids clustering, for handling non-numeric data. The optimal number of hidden nodes is determined by using clustering validity indices, like normalized modified Hubert's statistic and Davies-Bouldin index, in the symbolic framework. The effectiveness of the symbolic fuzzy classification is demonstrated on real-life benchmark data sets. Comparison is provided with the performance of a decision tree. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:553 / 564
页数:12
相关论文
共 50 条
  • [1] Fuzzy radial basis function network
    Mitra, S
    Basak, J
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1125 - 1128
  • [2] FRBF: A Fuzzy Radial Basis Function Network
    Sushmita Mitra
    Jayanta Basak
    [J]. Neural Computing & Applications, 2001, 10 : 244 - 252
  • [3] Adaptive fuzzy c-means clustering algorithm for a radial basis function network
    Mashor, MY
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (01) : 53 - 63
  • [4] Fuzzy regression with radial basis function network
    Cheng, CB
    Lee, ES
    [J]. FUZZY SETS AND SYSTEMS, 2001, 119 (02) : 291 - 301
  • [5] FRBF: A fuzzy radial basis function network
    Mitra, S
    Basak, J
    [J]. NEURAL COMPUTING & APPLICATIONS, 2001, 10 (03): : 244 - 252
  • [6] Diagnosis of power transformer using fuzzy clustering and radial basis function neural network
    Lee, J. P.
    Lee, D. J.
    Ji, P. S.
    Lim, J. Y.
    Kim, S. S.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1398 - +
  • [7] Fuzzy radial basis function network: a parallel design
    Sushmita Mitra
    [J]. Neural Computing & Applications, 2004, 13 : 261 - 267
  • [8] Fuzzy radial basis function network: a parallel design
    Mitra, S
    [J]. NEURAL COMPUTING & APPLICATIONS, 2004, 13 (03): : 261 - 267
  • [9] Adaptive image classification with radial basis function network
    Pun, CM
    [J]. PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS AND IMAGING, 2004, : 389 - 394
  • [10] A novel radial basis function network on ant colony clustering
    Wu, FF
    Zhao, YL
    Zhang, YZ
    [J]. PROCEEDINGS OF THE 11TH JOINT INTERNATIONAL COMPUTER CONFERENCE, 2005, : 464 - 469