Materials discovery via topologically-correct display of reduced-dimension data

被引:4
|
作者
Pao, YH [1 ]
Meng, Z
LeClair, S
Igelnik, B
机构
[1] Case Western Reserve Univ, Cleveland, OH 44106 USA
[2] AI WARE Inc, Cleveland, OH 44106 USA
[3] USAF, Res Lab, Mat & Mfg Directorate, WPAFB, OH USA
关键词
dimension reduction; materials design; materials property prediction; neural networks;
D O I
10.1016/S0925-8388(98)00608-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Authors describe and demonstrate a 'ratio-conserving' mapping procedure for attaining reduced-dimension representations of multidimensional data. This procedure has a theoretical basis for topological correctness in that the ratio of the metrics in the two representations is maintained constant throughout. It is also demonstrated that comparing the reduced-dimension depiction of data with the results of clustering and spanning tree operations in the full-dimension space can validate such reduced-dimension mappings. Demonstrations are carried out using a body of semiconductor data, with five independent variables and one dependent variable. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
引用
收藏
页码:22 / 29
页数:8
相关论文
共 26 条
  • [21] Dimension-Reduced Clustering of Functional Data via Subspace Separation
    Michio Yamamoto
    Heungsun Hwang
    Journal of Classification, 2017, 34 : 294 - 326
  • [22] Dimension-Reduced Clustering of Functional Data via Subspace Separation
    Yamamoto, Michio
    Hwang, Heungsun
    JOURNAL OF CLASSIFICATION, 2017, 34 (02) : 294 - 326
  • [23] Clustering noisy data in a reduced dimension space via multivariate regression trees
    Smyth, C
    Coomans, D
    Everingham, Y
    PATTERN RECOGNITION, 2006, 39 (03) : 424 - 431
  • [24] Towards Pareto optimal high entropy hydrides via data-driven materials discovery
    Witman, Matthew D.
    Ling, Sanliang
    Wadge, Matthew
    Bouzidi, Anis
    Pineda-Romero, Nayely
    Clulow, Rebecca
    Ek, Gustav
    Chames, Jeffery M.
    Allendorf, Emily J.
    Agarwal, Sapan
    Allendorf, Mark D.
    Walker, Gavin S.
    Grant, David M.
    Sahlberg, Martin
    Zlotea, Claudia
    Stavila, Vitalie
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (29) : 15878 - 15888
  • [25] Machine Learning Prediction of the Exfoliation Energies of Two-Dimension Materials via Data-Driven Approach
    Wan, Zhongyu
    Wang, Quan-De
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (46): : 11470 - 11475
  • [26] Adopting Big Data to Accelerate Discovery of 2D TMDCs Materials via CVR Method for the Potential Application in Urban Airborne Hg0 Sensor
    Zhao, Haitao
    Hu, Ruizhou
    Xie, Xinxuan
    Wang, Zhaoyue
    Jiang, Peng
    Zheng, Chenghang
    Gao, Xiang
    Wu, Tao
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 847 - 852