Life-Long Spatio-Temporal Exploration of Dynamic Environments

被引:0
|
作者
Krajnik, Tomas [1 ]
Santos, Joao M. [1 ]
Duckett, Tom [1 ]
机构
[1] Lincoln Univ, Lincoln Ctr Autonomous Syst, Lincoln, England
关键词
mobile robotics; spatio-temporal exploration;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose a new idea for life-long mobile robot spatio-temporal exploration of dynamic environments. Our method assumes that the world is subject to perpetual change, which adds an extra, temporal dimension to the explored space and makes the exploration task a never-ending data-gathering process. To create and maintain a spatio-temporal model of a dynamic environment, the robot has to determine not only where, but also when to perform observations. We address the problem by application of information-theoretic exploration to world representations that model the uncertainty of environment states as probabilistic functions of time. We compare the performance of different exploration strategies and temporal models on real-world data gathered over the course of several months and show that combination of dynamic environment representations with information-gain exploration principles allows to create and maintain up-to-date models of constantly changing environments.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Vision Paper: Reinforcement Learning in Smart Spatio-Temporal Environments
    Schmoll, Sebastian
    Schubert, Matthias
    26TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2018), 2018, : 81 - 84
  • [42] Effective opportunistic dissemination of spatio-temporal contents in mobile environments
    Kasamatsu, Daisuke
    Hu, Peizhao
    Kumar, Mohan
    PERVASIVE AND MOBILE COMPUTING, 2017, 42 : 27 - 44
  • [43] Spatio-temporal Dynamic Spectrum Allocation with interference handling
    Kovacs, Laszlo
    Vidacs, Attila
    Tapolcai, Janos
    2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, : 5575 - 5580
  • [44] SPATIO-TEMPORAL AVERAGING AND THE DYNAMIC VISUAL NOISE STEREOPHENOMENON
    NEILL, RA
    VISION RESEARCH, 1981, 21 (05) : 673 - 682
  • [45] DEFINING DYNAMIC SPATIO-TEMPORAL NEIGHBOURHOOD OF NETWORK DATA
    Cheng, Tao
    Anbaroglu, Berk
    JOINT INTERNATIONAL CONFERENCE ON THEORY, DATA HANDLING AND MODELLING IN GEOSPATIAL INFORMATION SCIENCE, 2010, 38 : 75 - 79
  • [46] Online Spatio-Temporal Matching in Stochastic and Dynamic Domains
    Lowalekar, Meghna
    Varakantham, Pradeep
    Jaillet, Patrick
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 3271 - 3277
  • [47] Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction
    Bak, Cagdas
    Kocak, Aysun
    Erdem, Erkut
    Erdem, Aykut
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (07) : 1688 - 1698
  • [48] Layered dynamic probabilistic networks for spatio-temporal modelling
    Bui, Hung H.
    Venkatesh, Svetha
    West, Geoff
    Intelligent Data Analysis, 1999, 3 (05): : 339 - 361
  • [49] Online spatio-temporal matching in stochastic and dynamic domains
    Lowalekar, Meghna
    Varakantham, Pradeep
    Jaillet, Patrick
    ARTIFICIAL INTELLIGENCE, 2018, 261 : 71 - 112
  • [50] Dynamic Spatio-temporal Integration of Traffic Accident Data
    Andersen, Ove
    Torp, Kristian
    26TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2018), 2018, : 596 - 599