Population sizing for the redundant trivial voting mapping

被引:0
|
作者
Rothlauf, F [1 ]
机构
[1] Univ Mannheim, Dept Informat Syst 1, D-68131 Mannheim, Germany
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates how the use of the trivial voting (TV) mapping influences the performance of genetic algorithms (GAs). The TV mapping is a redundant representation for binary phenotypes. A population sizing model is presented that quantitatively predicts the influence of the TV mapping and variants of this encoding on the performance of GAs. The results indicate that when using this encoding GA performance depends on the influence of the representation on the initial supply of building blocks. Therefore, GA performance remains unchanged if the TV mapping is uniformly redundant that means on average a phenotype is represented by the same number of genotypes. If the optimal solution is overrepresented, GA performance increases, whereas it decreases if the optimal solution is underrepresented. The results show that redundant representations like the TV mapping do not increase GA performance in general. Higher performance can only be achieved if there is specific knowledge about the structure of the optimal solution that can beneficially be used by the redundant representation.
引用
收藏
页码:1307 / 1319
页数:13
相关论文
共 50 条
  • [41] The population sizing problem in (P)GAs: Experiments
    Konfrst, Z
    Lazansky, J
    INTELLIGENT TECHNOLOGIES - THEORY AND APPLICATIONS: NEW TRENDS IN INTELLIGENT TECHNOLOGIES, 2002, 76 : 146 - 151
  • [42] Sizing Finite-Population Vehicle Pools
    Carpenter, Tommy
    Keshav, Srinivasan
    Wong, Johnny
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (03) : 1134 - 1144
  • [43] Voting behavior of the Jewish population in the Weimar Republic
    Albanis, E
    JOURNAL OF JEWISH STUDIES, 1998, 49 (02): : 392 - 394
  • [44] Adaptive population sizing schemes in genetic algorithms
    Lobo, Fernando G.
    Lima, Claudio F.
    PARAMETER SETTING IN EVOLUTIONARY ALGORITHMS, 2007, 54 : 185 - +
  • [45] Adaptive Parent Population Sizing in Evolution Strategies
    LaPorte, G. Jake
    Branke, Juergen
    Chen, Chun-Hung
    EVOLUTIONARY COMPUTATION, 2015, 23 (03) : 397 - 420
  • [46] EXPLORATIVE DATA MINING FOR THE SIZING OF POPULATION GROUPS
    Pena, Isis
    Viktor, Herna Lydia
    Paquet, Eric
    KDIR 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2009, : 152 - +
  • [47] Heuristic operators, redundant mapping and other issues in genetic algorithms
    Xu, Y
    Xu, SC
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 1398 - 1405
  • [48] Learning Reachable Manifold and Inverse Mapping for a Redundant Robot manipulator
    Kim, Seungsu
    Perez, Julien
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 4731 - 4737
  • [49] Mapping the human proteome for non-redundant peptide islands
    Capone, G.
    De Marinis, A.
    Simone, S.
    Kusalik, A.
    Kanduc, D.
    AMINO ACIDS, 2008, 35 (01) : 209 - 216
  • [50] Mapping the human proteome for non-redundant peptide islands
    G. Capone
    A. De Marinis
    S. Simone
    A. Kusalik
    D. Kanduc
    Amino Acids, 2008, 35