Second-order matching via explicit substitutions

被引:0
|
作者
de Moura, FLC [1 ]
Kamareddine, F
Ayala-Rincón, M
机构
[1] Univ Brasilia, Dept Matemat, Brasilia, DF, Brazil
[2] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh, Midlothian, Scotland
关键词
higher-order unification; second-order matching; explicit substitutions;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Matching is a basic operation extensively used in computation. Second-order matching, in particular, provides an adequate environment for expressing program transformations and pattern recognition for automated deduction. The past few years have established the benefit of using explicit substitutions for theorem proving and higher-order unification. In this paper, we will make use of explicit substitutions to facilitate matching: we develop a second-order matching algorithm via the lambda sigma-style of explicit substitutions. We introduce a convenient notation for matching in the lambda sigma-calculus. This notation keeps the matching equations separated from the incremental graftings. We characterise an important class of second-order matching problems which is essential to prove termination of the algorithm. In addition, we illustrate how the algorithm works through some examples.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条
  • [21] More on the explicit solutions for a second-order nonlinear boundary value problem
    Misir, Adil
    Tiryaki, Aydin
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1204 - 1208
  • [22] TaylorBoost: First and Second-order Boosting Algorithms with Explicit Margin Control
    Saberian, Mohammad J.
    Masnadi-Shirazi, Hamed
    Vasconcelos, Nuno
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [23] Explicit second-order accurate schemes for the nonlinear Schrödinger equations
    Čiegis R.
    Štikoniene O.
    Lithuanian Mathematical Journal, 1999, 39 (1) : 20 - 32
  • [24] Explicit two-step methods for second-order linear IVPs
    Tsitouras, C
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 943 - 949
  • [25] Explicit bounds for second-order difference equations and a solution to a question of Stevic
    Berenhaut, KS
    Goedhart, EG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (01) : 1 - 10
  • [26] A Second-Order Explicit Pressure Projection Method for Eulerian Fluid Simulation
    Jiang, J.
    Shen, X.
    Gong, Y.
    Fan, Z.
    Liu, Y.
    Xing, G.
    Ren, X.
    Zhang, Y.
    COMPUTER GRAPHICS FORUM, 2022, 41 (08) : 95 - 105
  • [27] Pure Second-Order Logic with Second-Order Identity
    Paseau, Alexander
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2010, 51 (03) : 351 - 360
  • [28] On second-order s-sub-step explicit algorithms with controllable dissipation and adjustable bifurcation point for second-order hyperbolic problems
    Li, Jinze
    Li, Hua
    Zhao, Rui
    Yu, Kaiping
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [29] Solutions to Output Regulation Problems of Matrix Second-order Systems via Second-order Dynamic Output Feedback
    Teng, Y.
    Duan, G. R.
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 1190 - +
  • [30] Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method
    Bai, ZJ
    Su, YF
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05): : 1692 - 1709