FORCING EDGE DETOUR MONOPHONIC NUMBER OF A GRAPH

被引:0
|
作者
Titus, P. [1 ]
Ganesamoorthy, K. [2 ]
机构
[1] Univ Coll Engn Nagercoil, Dept Math, Nagercoil 629004, India
[2] Coimbatore Inst Technol, Dept Math, Coimbatore 641014, Tamil Nadu, India
关键词
edge detour monophonic set; edge detour monophonic number; forcing edge detour monophonic set; forcing edge detour monophonic number;
D O I
10.22108/toc.2021.119182.1670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph G = (V,E) of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G). A subset T of S is a forcing edge detour monophonic subset for S if S is the unique edge detour monophonic set of size edm(G) containing T. A forcing edge detour monophonic subset for S of minimum cardinality is a minimum forcing edge detour monophonic subset of S. The forcing edge detour monophonic number f(edm)(S) in G is the cardinality of a minimum forcing edge detour monophonic subset of S. The forcing edge detour monophonic number of G is f(edm)(G) = min{f(edm)(S)}, where the minimum is taken over all edge detour monophonic sets S of size edm(G) in G. We determine bounds for it and find the forcing edge detour monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 <= a < b and b >= 2, there exists a connected graph G such that f(edm)(G) = a and edm(G) = b.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [21] The forcing edge covering number of a graph
    John, J.
    Vijayan, A.
    Sujitha, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2011, 14 (03): : 249 - 259
  • [22] Weak edge triangle free detour number of a graph
    Ramalingam, S. Sethu
    Athisayanathan, S.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 645 - 658
  • [23] The upper edge-to-vertex detour number of a graph
    Santhakumaran, A. P.
    Athisayanathan, S.
    ALGEBRA & DISCRETE MATHEMATICS, 2012, 13 (01): : 128 - 138
  • [24] THE UPPER EDGE GEODETIC NUMBER AND THE FORCING EDGE GEODETIC NUMBER OF A GRAPH
    Santhakumaran, A. P.
    John, J.
    OPUSCULA MATHEMATICA, 2009, 29 (04) : 427 - 441
  • [25] On the nonsplit monophonic number of a graph
    Mahendran, M.
    Swathy, G.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 112 : 253 - 261
  • [26] The forcing edge fixed steiner number of a graph
    Perumalsamy, M.
    Sudhahar, P. Arul Paul
    Vasanthi, R.
    John, J.
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2019, 22 (01): : 1 - 10
  • [27] On the open monophonic number of a graph
    Santhakumaran, A. P.
    Mahendran, M.
    Ganesamoorthy, K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (08)
  • [28] On the total monophonic number of a graph
    Arumugam, S.
    Santhakumaran, A. P.
    Titus, P.
    Ganesamoorthy, K.
    Murugan, M.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (03) : 483 - 489
  • [29] On the connected monophonic number of a graph
    Ganesamoorthy, K.
    Murugan, M.
    Santhakumaran, A. P.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2022, 7 (02) : 139 - 148
  • [30] The Connected Monophonic Number of a Graph
    P. Titus
    K. Ganesamoorthy
    Graphs and Combinatorics, 2014, 30 : 237 - 245