FORCING EDGE DETOUR MONOPHONIC NUMBER OF A GRAPH

被引:0
|
作者
Titus, P. [1 ]
Ganesamoorthy, K. [2 ]
机构
[1] Univ Coll Engn Nagercoil, Dept Math, Nagercoil 629004, India
[2] Coimbatore Inst Technol, Dept Math, Coimbatore 641014, Tamil Nadu, India
关键词
edge detour monophonic set; edge detour monophonic number; forcing edge detour monophonic set; forcing edge detour monophonic number;
D O I
10.22108/toc.2021.119182.1670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph G = (V,E) of order at least two, an edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G). A subset T of S is a forcing edge detour monophonic subset for S if S is the unique edge detour monophonic set of size edm(G) containing T. A forcing edge detour monophonic subset for S of minimum cardinality is a minimum forcing edge detour monophonic subset of S. The forcing edge detour monophonic number f(edm)(S) in G is the cardinality of a minimum forcing edge detour monophonic subset of S. The forcing edge detour monophonic number of G is f(edm)(G) = min{f(edm)(S)}, where the minimum is taken over all edge detour monophonic sets S of size edm(G) in G. We determine bounds for it and find the forcing edge detour monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 <= a < b and b >= 2, there exists a connected graph G such that f(edm)(G) = a and edm(G) = b.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [1] FORCING DETOUR MONOPHONIC NUMBER OF A GRAPH
    Titus, P.
    Ganesamoorthy, K.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2013, 28 (02): : 211 - 220
  • [2] The forcing vertex detour monophonic number of a graph
    Titus, P.
    Balakrishnan, P.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 76 - 84
  • [3] On The Detour Monophonic Number of a Graph
    Titus, P.
    Ganesamoorthy, K.
    ARS COMBINATORIA, 2016, 129 : 33 - 42
  • [4] THE VERTEX DETOUR MONOPHONIC NUMBER OF A GRAPH
    Titus, P.
    Balakrishnan, P.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (04): : 565 - 583
  • [5] ON THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH
    Titus, P.
    Ganesamoorthy, K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (04): : 966 - 974
  • [6] THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH
    Titus, P.
    Santhakumaran, A. P.
    Ganesamoorthy, K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2016, 6 (01): : 75 - 86
  • [7] The upper vertex detour monophonic number of a graph
    Titus, P.
    Balakrishnan, P.
    ARS COMBINATORIA, 2017, 132 : 159 - 169
  • [8] The connected vertex detour monophonic number of a graph
    Titus P.
    Balakrishnan P.
    Ganesamoorthy K.
    Afrika Matematika, 2017, 28 (3-4) : 311 - 320
  • [9] THE FORCING EDGE FIXING EDGE- TO- VERTEX MONOPHONIC NUMBER OF A GRAPH
    John, J.
    Samundesvari, K. Uma
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (04)
  • [10] Total and forcing total edge-to-vertex monophonic number of a graph
    John, J.
    Samundesvari, K. Uma
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 134 - 147