Two-Dimensional GeP3 as a High Capacity Anode Material for Non-Lithium-Ion Batteries

被引:86
|
作者
Deng, Xiaoyu [1 ]
Chen, Xianfei [1 ]
Huang, Yi [2 ,3 ]
Xiao, Beibei [4 ]
Du, Haiying [2 ,3 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Environm & Ecol, Chengdu 610059, Sichuan, Peoples R China
[3] Chengdu Univ Technol, State Environm Protect Key Lab Synerget Control &, Chengdu 610059, Sichuan, Peoples R China
[4] Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Jiangsu, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 08期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
AB-INITIO PREDICTION; ELECTRODE MATERIAL; ENERGY-STORAGE; NA; LI; SODIUM; GRAPHENE; BOROPHENE; SILICENE; PHOSPHORENE;
D O I
10.1021/acs.jpcc.8b11574
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Utilization of non-lithium-ion batteries in next generation renewable energy storage is hindered by the lack of appropriate electrode materials with desired electrochemical performance. Motivated by low peeling-off energy (Ding et al. Nano Lett. 2017, 17(3), 1833-1838), an experimentally available two-dimensional material, nominated as GeP3, is investigated as the anode for non-lithium-ion batteries (Na+, Ca2+, Mg2+, Al3+) based on density functional theory calculations. The electrochemical properties, i.e., ion intercalation mechanism, diffusion behavior, and theoretical capacities of different metal ions in GeP3, are systematically investigated. A semiconductor-to-metal transition and improved conductivity are observed due to ions intercalation in the GeP3 electrode. Even though the charge storage mechanism of Na and Ca ions is quite different, the GeP3 monolayer has exhibited a high theoretical capacity of 1295.42 mAh g(-1) for both Na+ and Ca2+ ions. Furthermore, collective Na ions transport at the phase boundary indicates that the sodiated GeP3 electrode favors well-distributed phase formation instead of separation or clustering at the nanoscale, which is beneficial in avoiding the thermal runaway issues induced by dendrite formation. Moreover, the shallow and steady intercalation/deintercalation resistance of the Na ion at the dilute limit and phase boundary in GeP3 suggests excellent rate performance and high cyclic stability. These results provide a steady path toward further development and utilization of two-dimensional GeP3 as an anode in non-lithium-ion batteries.
引用
下载
收藏
页码:4721 / 4728
页数:8
相关论文
共 50 条
  • [41] Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study
    Zhao, Xin-Tong
    Guo, Jin-Zhi
    Li, Wen-Liang
    Zhang, Jing-Ping
    Wu, Xing-Long
    CHINESE CHEMICAL LETTERS, 2024, 35 (06)
  • [42] A two-dimensional MXene/BN van der Waals heterostructure as an anode material for lithium-ion batteries
    Yuan, Kun
    Hao, Pengju
    Zhou, Yang
    Hu, Xianchao
    Zhang, Jianbo
    Zhong, Shengwen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (22) : 13713 - 13719
  • [43] Hydroxylamine hydrochloride: A novel anode material for high capacity lithium-ion batteries
    Shao, Lianyi
    Shu, Jie
    Lao, Mengmeng
    Lin, Xiaoting
    Wu, Kaigiang
    Shui, Miao
    Li, Peng
    Long, Nengbing
    Ren, Yuanlong
    JOURNAL OF POWER SOURCES, 2014, 272 : 39 - 44
  • [44] Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability
    Zhang, Hongyu
    Xia, Yueyuan
    Bu, Hongxia
    Wang, Xiaopeng
    Zhang, Meng
    Luo, Youhua
    Zhao, Mingwen
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
  • [45] Foamed silicon particles as a high capacity anode material for lithium-ion batteries
    Sohn, Myungbeom
    Park, Hyeong-Il
    Kim, Hansu
    CHEMICAL COMMUNICATIONS, 2017, 53 (87) : 11897 - 11900
  • [46] Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries
    Tang, Jingjing
    Yin, Qifang
    Wang, Qian
    Li, Qianqian
    Wang, Hongtao
    Xu, Zhenglong
    Yao, Haimin
    Yang, Juan
    Zhou, Xiangyang
    Kim, Jang-Kyo
    Zhou, Limin
    NANOSCALE, 2019, 11 (22) : 10984 - 10991
  • [47] Two-dimensional TiCl2: a high-performance anode material for Na-ion batteries with high capacity and fast diffusion
    Zhu, Hong-Yao
    Ye, Xiao-Juan
    Meng, Lan
    Zheng, Xiao-Hong
    Jia, Ran
    Liu, Chun-Sheng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (16) : 11513 - 11521
  • [48] Electrochemical growth of two-dimensional tin nano-platelet as high-performance anode material in lithium-ion batteries
    Khabazian, S.
    Sanjabi, S.
    Tonti, Dino
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 84 : 120 - 130
  • [49] Two-dimensional B2C as a potential anode material for Mg-ion batteries with extremely high theoretical capacity
    Kasprzak, Grzegorz T.
    Durajski, Artur P.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [50] A record-high ion storage capacity of T-graphene as two-dimensional anode material for Li-ion and Na-ion batteries
    Zhang, Xiaoming
    Jin, Lei
    Dai, Xuefang
    Chen, Guifeng
    Liu, Guodong
    APPLIED SURFACE SCIENCE, 2020, 527