Khasminskii-Whitham averaging for randomly perturbed KdV equation

被引:32
|
作者
Kuksin, Sergei B. [1 ,2 ]
Piatnitski, Andrey L. [3 ,4 ]
机构
[1] Ecole Polytech, CMLS, F-91128 Palaiseau, France
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] RAS, PN Lebedev Phys Inst, Moscow 119991, Russia
来源
关键词
D O I
10.1016/j.matpur.2007.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the damped-driven KdV equation: [GRAPHICS] where 0 < v < 1 and the random process eta is smooth in x and white in t. For any periodic function u(x) let I = (I-1,I-2, . . .) be the vector, formed by the KdV integrals of motion, calculated for the potential u (x). We prove that if u (t, x) is a solution of the equation above, then for 0 <= t less than or similar to v(-1) and v -> 0 the vector I(t) = (I-1(u(t,.)), I-2(u(t,.)), . . . ) satisfies the (Whitham) averaged equation. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:400 / 428
页数:29
相关论文
共 50 条
  • [31] Homoclinic Orbits for a Perturbed Lattice Modified KdV Equation
    V. M. Rothos
    Theoretical and Mathematical Physics, 2003, 134 : 117 - 127
  • [32] Solitary Waves of the Perturbed KdV Equation with Nonlocal Effects
    Jianjiang Ge
    Ranchao Wu
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 553 - 577
  • [33] Homotopic mapping solution of soliton for perturbed KdV equation
    Department of Mathematics, Anhui Normal University, Wuhu 241000, China
    Wuli Xuebao, 2008, 12 (7419-7422):
  • [34] On integrability of a (2+1)-dimensional perturbed KdV equation
    Sakovich, SY
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (03) : 230 - 233
  • [35] Quasi-periodic solutions for perturbed generalized KdV equation
    Mi, Lufang
    Zhang, Kangkang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 314 - 337
  • [36] On Integrability of a (2+1)-Dimensional Perturbed KdV Equation
    S. Yu. Sakovich
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 230 - 233
  • [37] Existence of Solitary Waves in a Perturbed KdV-mKdV Equation
    Li, Chengqun
    Wei, Minzhi
    Lin, Yuanhua
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [38] EXACT SOLUTION OF PERTURBED KDV EQUATION WITH VARIABLE DISSIPATION COEFFICIENT
    Demiray, H.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2017, 16 (01) : 12 - 16
  • [39] Adomian decomposition method and exact solutions of the perturbed KdV equation
    Wu, B
    Lou, SY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (06) : 649 - 652
  • [40] Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation
    Tu Tao
    Wang Lin-Jun
    Hao Xiao-Jie
    Guo Guang-Can
    Guo Guo-Ping
    CHINESE PHYSICS LETTERS, 2009, 26 (06)