Automatic liver segmentation of contrast enhanced CT images based on histogram processing

被引:0
|
作者
Seo, KS [1 ]
Kim, HB
Park, T
Kim, PK
Park, JA
机构
[1] Chosun Univ, Dept Informat & Commun Engn, Kwangju, South Korea
[2] Chosun Univ, Dept Comp Engn, Kwangju, South Korea
来源
ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS | 2005年 / 3610卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of neighboring organs in the abdomen. In this paper, an automatic liver segmentation method using histogram processing is proposed for overcoming randomness of CE-CT images and removing other abdominal organs. Forty CE-CT slices of ten patients were selected to evaluate the proposed method. As the evaluation measure, the normalized average area and area error rate were used. From the results of experiments, liver segmentation using histogram process has similar performance as the manual method by medical doctor.
引用
收藏
页码:1027 / 1030
页数:4
相关论文
共 50 条
  • [21] A hybrid technique for automatic segmentation of liver in CT images
    Foruzan, Amir H.
    Zoroofi, Reza A.
    Sato, Yoshinobu
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2007, 2 : S94 - S96
  • [22] Automatic segmentation of ground-glass opacity nodule on chest CT images using histogram modeling and local contrast
    Jung, Julip
    Hong, Helen
    Goo, Jin Mo
    MEDICAL IMAGING 2012: COMPUTER-AIDED DIAGNOSIS, 2012, 8315
  • [23] Learning-based Automatic Segmentation on Arteriovenous Malformations from Contrast CT Images
    Wang, Tonghe
    Lei, Yang
    Shafai-Erfani, Ghazal
    Jiang, Xiaojun
    Dong, Xue
    Zhou, Jun
    Liu, Tian
    Curran, Walter J.
    Shu, Hui-Kuo
    Yang, Xiaofeng
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [24] Empirical greedy machine-based automatic liver segmentation in CT images
    Mourya, Gajendra Kumar
    Bhatia, Dinesh
    Handique, Akash
    IET IMAGE PROCESSING, 2020, 14 (14) : 3333 - 3340
  • [25] Graph Partitioning based Automatic Segmentation Approach for CT Scan Liver Images
    Elmasry, Walaa H.
    Moftah, Hossam M.
    El-Bendary, Nashwa
    Hassanien, Aboul Ella
    2012 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2012, : 183 - 186
  • [26] Fast and accurate technique for liver tumour segmentation on non-contrast enhanced CT images
    Fatnassi, C.
    Betz, M.
    Boucenna, R.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2016, 192 (11) : 869 - 869
  • [27] Automatic segmentation of the liver using multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images
    Jang, Yujin
    Hong, Helen
    Chung, Jin Wook
    Yoon, Young Ho
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [28] Convolutional neural network-based automatic liver delineation on contrast-enhanced and non-contrast-enhanced CT images for radiotherapy planning
    Sakashita, Naohiro
    Shirai, Kiyonori
    Ueda, Yoshihiro
    Ono, Ayuka
    Teshima, Teruki
    REPORTS OF PRACTICAL ONCOLOGY AND RADIOTHERAPY, 2020, 25 (06) : 981 - 986
  • [29] Paediatric Liver Segmentation for Low-Contrast CT Images
    Bajger, Mariusz
    Lee, Gobert
    Caon, Martin
    DATA DRIVEN TREATMENT RESPONSE ASSESSMENT AND PRETERM, PERINATAL, AND PAEDIATRIC IMAGE ANALYSIS, 2018, 11076 : 169 - 178
  • [30] Automatic Contrast Enhancement for Low Contrast Images: A Comparison of Recent Histogram Based Techniques
    Lakshmanan, Rekha
    Nair, Madhu S.
    Wjiscy, M.
    Tatavarti, Rao
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, 2008, : 269 - +