Remote optical fiber dosimetry

被引:114
|
作者
Huston, AL
Justus, BL
Falkenstein, PL
Miller, RW
Ning, H
Altemus, R
机构
[1] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA
[2] NCI, DCT, Radiat Oncol Branch, Radiat Oncol Sci Program,NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0168-583X(01)00713-3
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL). (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [41] Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber
    Li, Haidong
    Garrigue, Patrick
    Bouffier, Laurent
    Arbault, Stephane
    Kuhn, Alexander
    Sojic, Neso
    ANALYST, 2016, 141 (14) : 4299 - 4304
  • [42] Numerical Analysis of Remote Optical Fiber Sensors Systems with Raman Optical Amplification
    Coelho, Thiago
    Melao, Eduardo
    Bessa, Alexandre
    Coelho, Diogo
    Lamin, Mayk
    Pontes, Maria Jose
    IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (06) : 1085 - 1092
  • [43] Optical fiber sensing of corroded materials using optical fibers as remote probes
    Namkung, Juock
    Kulowitch, Paul
    Schwartz, Andy
    PHOTONIC APPLICATIONS FOR AEROSPACE, COMMERCIAL, AND HARSH ENVIRONMENTS IV, 2013, 8720
  • [44] All-Optical Gain Clamping of a Fiber Amplifier with Remote Optical Pumping
    A. Yu. Igumenov
    S. N. Lukinykh
    O. E. Nanii
    V. N. Treshchikov
    Bulletin of the Lebedev Physics Institute, 2023, 50 : S1120 - S1127
  • [45] FIBER OPTICS DOSIMETRY
    KRONENBERG, S
    SIEBENTRITT, CR
    NUCLEAR INSTRUMENTS & METHODS, 1980, 175 (01): : 109 - 111
  • [46] Evaluation of ruby as a fluorescent sensor for optical fiber-based radiation dosimetry
    Jordan, KJ
    FLUORESCENCE DETECTION IV, PROCEEDINGS OF, 1996, 2705 : 170 - 178
  • [47] Reflective side-polished optical fiber submersion sensor using an optical fiber mirror for remote sensing
    Lee, Cherl-Hee
    Kim, Jang-Hee
    Park, Jae-Hee
    Song, Jae-Won
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (5-8) : 583 - 585
  • [48] Optomechanical measurements of optical fiber coating for radiation dosimetry and structural health monitoring
    Zilberman, Shlomi
    London, Yosef
    Bernstein, Alon
    Sharma, Kavita
    Diamandi, Hilel H.
    Hen, Mirit
    Zehavi, Elad
    Bashan, Gil
    Berkovic, Garry
    Zentner, Amnon
    Mayoni, Moshe
    Shafir, Ehud
    Zadok, Avi
    MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES VII, 2022, 12140
  • [49] Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry
    Jia, Ming
    Wen, Jianxiang
    Pan, Xiangping
    Xin, Zhiwei
    Pang, Fufei
    He, Linfeng
    Wang, Tingyun
    OPTICS EXPRESS, 2021, 29 (02) : 1210 - 1220
  • [50] Qualification and Calibration of Single-Mode Phosphosilicate Optical Fiber for Dosimetry at CERN
    Di Francesca, Diego
    Li Vecchi, Gaetano
    Girard, Sylvain
    Morana, Adriana
    Reghioua, Imene
    Alessi, Antonin
    Hoehr, Cornelia
    Robin, Thierry
    Kadi, Yacine
    Brugger, Markus
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (18) : 4643 - 4649