Atmospheric escape from the TRAPPIST-1 planets and implications for habitability

被引:148
|
作者
Dong, Chuanfei [1 ,2 ]
Jin, Meng [3 ]
Lingam, Manasvi [4 ,5 ]
Airapetian, Vladimir S. [6 ]
Ma, Yingjuan [7 ]
van der Holst, Bart [8 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Plasma Phys Lab, Princeton Ctr Heliophys, Princeton, NJ 08544 USA
[3] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
[4] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[6] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA
[7] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[8] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA
关键词
exoplanets; stellar wind; atmospheric escape; astrobiology; TERRESTRIAL PLANETS; MASS-LOSS; STELLAR; EXOPLANETS; EVOLUTION; WIND;
D O I
10.1073/pnas.1708010115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The presence of an atmosphere over sufficiently long timescales is widely perceived as one of the most prominent criteria associated with planetary surface habitability. We address the crucial question of whether the seven Earth-sized planets transiting the recently discovered ultracool dwarf star TRAPPIST-1 are capable of retaining their atmospheres. To this effect, we carry out numerical simulations to characterize the stellar wind of TRAPPIST-1 and the atmospheric ion escape rates for all of the seven planets. We also estimate the escape rates analytically and demonstrate that they are in good agreement with the numerical results. We conclude that the outer planets of the TRAPPIST-1 system are capable of retaining their atmospheres over billion-year timescales. The consequences arising from our results are also explored in the context of abiogenesis, biodiversity, and searches for future exoplanets. In light of the many unknowns and assumptions involved, we recommend that these conclusions must be interpreted with due caution.
引用
收藏
页码:260 / 265
页数:6
相关论文
共 50 条
  • [22] Investigating TRAPPIST-1 e atmospheric scenarios
    Maltagliati, Luca
    NATURE ASTRONOMY, 2021, 5 (06) : 530 - 530
  • [23] Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1
    de Wit, Julien
    Wakeford, Hannah R.
    Lewis, Nikole K.
    Delrez, Laetitia
    Gillon, Michael
    Selsis, Frank
    Leconte, Jeremy
    Demory, Brice-Olivier
    Bolmont, Emeline
    Bourrier, Vincent
    Burgasser, Adam J.
    Grimm, Simon
    Jehin, Emmanuel
    Lederer, Susan M.
    Owen, James E.
    Stamenkovic, Vlada
    Triaud, Amaury H. M. J.
    NATURE ASTRONOMY, 2018, 2 (03): : 214 - 219
  • [24] The TRAPPIST-1 system: orbital evolution, tidal dissipation, formation and habitability
    Papaloizou, J. C. B.
    Szuszkiewicz, Ewa
    Terquem, Caroline
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (04) : 5032 - 5056
  • [25] Investigating TRAPPIST-1 e atmospheric scenarios
    Luca Maltagliati
    Nature Astronomy, 2021, 5 : 530 - 530
  • [26] Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1
    Julien de Wit
    Hannah R. Wakeford
    Nikole K. Lewis
    Laetitia Delrez
    Michaël Gillon
    Frank Selsis
    Jérémy Leconte
    Brice-Olivier Demory
    Emeline Bolmont
    Vincent Bourrier
    Adam J. Burgasser
    Simon Grimm
    Emmanuël Jehin
    Susan M. Lederer
    James E. Owen
    Vlada Stamenković
    Amaury H. M. J. Triaud
    Nature Astronomy, 2018, 2 : 214 - 219
  • [27] An experimental study of the biological impact of a superflare on the TRAPPIST-1 planets
    Abrevaya, X. C.
    Odert, P.
    Oppezzo, O. J.
    Leitzinger, M.
    Luna, G. J. M.
    Guenther, E.
    Patel, M. R.
    Hanslmeier, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 535 (02) : 1616 - 1624
  • [28] Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions
    Cayman T. Unterborn
    Steven J. Desch
    Natalie R. Hinkel
    Alejandro Lorenzo
    Nature Astronomy, 2018, 2 : 297 - 302
  • [29] Do the TRAPPIST-1 Planets Have Hydrogen-rich Atmospheres?
    Hori, Yasunori
    Ogihara, Masahiro
    ASTROPHYSICAL JOURNAL, 2020, 889 (02):
  • [30] Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions
    Unterborn, Cayman T.
    Desch, Steven J.
    Hinkel, Natalie R.
    Lorenzo, Alejandro
    NATURE ASTRONOMY, 2018, 2 (04): : 297 - 302