Tight bounds of minimum distance distributions of irregular LDPC code ensembles

被引:0
|
作者
Miyamoto, Shinya [1 ]
Kasai, Kenta [1 ]
Shibuya, Tomoharu [2 ]
Sakaniwa, Kohichi [1 ]
机构
[1] Tokyo Inst Technol, Dept Commun & Integrated Syst, Tokyo 1528552, Japan
[2] Natl Inst Multimedia Educ, R & D Dept, Chiba 2610014, Japan
关键词
D O I
10.1109/ISIT.2007.4557315
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Upper bounds of minimum distance distributions of Gallger codes and irregular LDPC codes were derived by Gallage and Di, respectively. Di's bounds are tight for irregular LDPC codes which have variable nodes of degree two, however, it is not tight for irregular LDPC codes which do not. In this paper, we derive tight lower and upper bounds of minimum distance distributions of irregular LDPC code ensembles without variable nodes of degree two.
引用
收藏
页码:756 / +
页数:2
相关论文
共 50 条
  • [21] Generalization of Tanner's minimum distance bounds for LDPC codes
    Shin, MH
    Kim, JS
    Song, HY
    IEEE COMMUNICATIONS LETTERS, 2005, 9 (03) : 240 - 242
  • [22] Weight distributions of LDPC code ensembles: Combinatorics meets statistical physics
    Di, CY
    Montanari, A
    Urbanke, R
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 102 - 102
  • [23] ON UNIVERSAL LDPC CODE ENSEMBLES
    Sason, Igal
    Shuval, Boaz
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 689 - 693
  • [24] From Cages to Trapping Sets: A New Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes
    Dehghan, Ali
    Banihashemi, Amir H.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1640 - 1644
  • [25] From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes
    Dehghan, Ali
    Banihashemi, Amir H.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2062 - 2074
  • [26] Improved Linear Programming Decoding and Bounds on the Minimum Distance of LDPC Codes
    Burshtein, David
    Goldenberg, Idan
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [27] Bounds on the Minimum Distance of Punctured Quasi-Cyclic LDPC Codes
    Butler, Brian K.
    Siegel, Paul H.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) : 4584 - 4597
  • [28] Stopping set distributions of two-edge type LDPC code ensembles
    Ikegaya, R
    Kasai, K
    Shimoyama, Y
    Shibuya, T
    Sakaniwa, K
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 985 - 989
  • [29] UPPER BOUNDS ON CARDINALITY OF A BINARY CODE WITH A GIVEN MINIMUM DISTANCE
    SIDELNIKOV, VM
    INFORMATION AND CONTROL, 1975, 28 (04): : 292 - 303
  • [30] On LDPC Code Ensembles with Generalized Constraints
    Liu, Yanfang
    Olmos, Pablo M.
    Koch, Tobias
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 371 - 375