GEE analysis in joint mean-covariance model for longitudinal data

被引:1
|
作者
Lu, Fei [1 ]
Xue, Liugen [1 ]
Cai, Xiong [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Robust estimation; Correlation matrix; Generalized estimating equations; Longitudinal data; Cholesky decomposition; GENERALIZED ESTIMATING EQUATIONS; MATRIX;
D O I
10.1016/j.spl.2020.108705
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose generalized estimating equations for the regression parameters in joint mean-covariance model for longitudinal data, motivated by the alternative Cholesky decomposition. This decomposition causes robust estimation of the correlation matrix against model misspecification for innovation variances. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Multivariate contaminated normal mixture regression modeling of longitudinal data based on joint mean-covariance model
    Niu, Xiaoyu
    Tian, Yuzhu
    Tang, Manlai
    Tian, Maozai
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)
  • [22] Regressograms and Mean-Covariance Models for Incomplete Longitudinal Data
    Garcia, Tanya P.
    Kohli, Priya
    Pourahmadi, Mohsen
    [J]. AMERICAN STATISTICIAN, 2012, 66 (02): : 85 - 91
  • [23] Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 343 - 356
  • [24] Analysis of longitudinal data with semiparametric varying-coefficient mean-covariance models
    Zhao, Yan-Yong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 363 : 485 - 502
  • [25] Parsimonious Mean-Covariance Modeling for Longitudinal Data with ARMA Errors
    Jiangli Wang
    Yu Chen
    Weiping Zhang
    [J]. Journal of Systems Science and Complexity, 2019, 32 : 1675 - 1692
  • [26] Parsimonious Mean-Covariance Modeling for Longitudinal Data with ARMA Errors
    WANG Jiangli
    CHEN Yu
    ZHANG Weiping
    [J]. Journal of Systems Science & Complexity, 2019, 32 (06) : 1675 - 1692
  • [27] Parsimonious Mean-Covariance Modeling for Longitudinal Data with ARMA Errors
    Wang, Jiangli
    Chen, Yu
    Zhang, Weiping
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (06) : 1675 - 1692
  • [28] jmcm: a Python']Python package for analyzing longitudinal data using joint mean-covariance models
    Yang, Xuerui
    Pan, Jianxin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (11) : 5446 - 5461
  • [29] D-optimal designs of mean-covariance models for longitudinal data
    Yi, Siyu
    Zhou, Yongdao
    Pan, Jianxin
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (05) : 1072 - 1085
  • [30] VARIABLE SELECTION IN ROBUST JOINT MEAN AND COVARIANCE MODEL FOR LONGITUDINAL DATA ANALYSIS
    Zheng, Xueying
    Fung, Wing Kam
    Zhu, Zhongyi
    [J]. STATISTICA SINICA, 2014, 24 (02) : 515 - 531