Teleportation of squeezing: Optimization using non-Gaussian resources

被引:36
|
作者
Dell'Anno, Fabio [1 ,2 ]
De Siena, Silvio [1 ,2 ]
Adesso, Gerardo [3 ]
Illuminati, Fabrizio [1 ,2 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, CNR SPIN, Unita Salerno,CNISM, I-84084 Fisciano, SA, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, I-84084 Fisciano, SA, Italy
[3] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 06期
关键词
QUANTUM TELEPORTATION; STATES; EXCITATIONS; DECOHERENCE; GENERATION; LIGHT;
D O I
10.1103/PhysRevA.82.062329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell'Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. A 76, 022301 (2007); F. Dell'Anno, S. De Siena, and F. Illuminati, ibid. 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Gaussian and non-Gaussian statistics
    Pawelec, JJ
    [J]. 1997 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, PROCEEDINGS, 1997, : 475 - 479
  • [32] Optimization and testing in linear non-Gaussian component analysis
    Jin, Ze
    Risk, Benjamin B.
    Matteson, David S.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (03) : 141 - 156
  • [33] Conditional quantum teleportation of non-Gaussian states of light: improvement to output state non-classicality
    Benichi, Hugo
    Takeda, Shuntaro
    Mizuta, Takahiro
    Mista, Ladislav, Jr.
    Filip, Radim
    Furusawa, Akira
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [34] ON GAUSSIAN SUM OF GAUSSIAN VARIATES NON-GAUSSIAN SUM OF GAUSSIAN VARIATES AND GAUSSIAN SUM OF NON-GAUSSIAN VARIATES
    MASONSON, M
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (09): : 1661 - &
  • [35] Estimation of Gaussian random displacement using non-Gaussian states
    Hanamura, Fumiya
    Asavanant, Warit
    Fukui, Kosuke
    Konno, Shunya
    Furusawa, Akira
    [J]. PHYSICAL REVIEW A, 2021, 104 (06)
  • [36] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
    Tang Xu-Bing
    Gao Fang
    Wang Yao-Xiong
    Kuang Sen
    Shuang Feng
    [J]. CHINESE PHYSICS B, 2015, 24 (03)
  • [37] Using absolute non-Gaussian non-white observations in Gaussian SLAM
    Guivant, J
    Masson, F
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 336 - 341
  • [38] STATISTICAL CHARACTERISTICS OF A NON-GAUSSIAN SIGNAL ENVELOPE IN NON-GAUSSIAN NOISE
    MELITITSKIY, VA
    AKINSHIN, NS
    MELITITSKAYA, VV
    MIKHAILOV, AV
    [J]. TELECOMMUNICATIONS AND RADIO ENGINEERING, 1986, 40-1 (11) : 125 - 129
  • [39] OPTIMAL IDENTIFICATION OF NON-GAUSSIAN SIGNALS IN THE BACKGROUND OF NON-GAUSSIAN INTERFERENCE
    MELITITSKY, VA
    SHLYAKHIN, VM
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1986, 29 (04): : 91 - 94
  • [40] Non-Gaussian Random Vibrations Using Kurtosis
    Hosoyama, Akira
    Saito, Katsuhiko
    Nakajima, Takamasa
    [J]. 18TH IAPRI WORLD PACKAGING CONFERENCE, 2012, : 35 - 40