LARGE-SCALE SPARSE SUBSPACE CLUSTERING USING LANDMARKS

被引:0
|
作者
Pourkarnali-Anaraki, Farhad [1 ]
机构
[1] Univ Massachusetts Lowell, Dept Comp Sci, Lowell, MA 01854 USA
关键词
Unsupervised learning; subspace clustering; large-scale data; landmark selection; computational cost; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace clustering methods based on expressing each data point as a linear combination of all other points in a dataset are popular unsupervised learning techniques. However, existing methods incur high computational complexity on large-scale datasets as they require solving an expensive optimization problem and performing spectral clustering on large affinity matrices. This paper presents an efficient approach to sub-space clustering by selecting a small subset of the input data called landmarks. The resulting subspace clustering method in the reduced domain runs in linear time with respect to the size of the original data. Numerical experiments on synthetic and real data demonstrate the effectiveness of our method.
引用
收藏
页数:6
相关论文
共 50 条
  • [22] Regularized and Sparse Stochastic K-Means for Distributed Large-Scale Clustering
    Jumutc, Vilen
    Langone, Rocco
    Suykens, Johan A. K.
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2535 - 2540
  • [23] LARGE-SCALE COVER SONG RECOGNITION USING HASHED CHROMA LANDMARKS
    Bertin-Mahieux, Thierry
    Ellis, Daniel P. W.
    [J]. 2011 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2011, : 117 - 120
  • [24] Probabilistic Sparse Subspace Clustering Using Delayed Association
    Jaberi, Maryam
    Pensky, Marianna
    Foroosh, Hassan
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2087 - 2092
  • [25] Scalable Sparse Subspace Clustering
    Peng, Xi
    Zhang, Lei
    Yi, Zhang
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 430 - 437
  • [26] Stochastic Sparse Subspace Clustering
    Chen, Ying
    Li, Chun-Guang
    You, Chong
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4154 - 4163
  • [27] Reweighted sparse subspace clustering
    Xu, Jun
    Xu, Kui
    Chen, Ke
    Ruan, Jishou
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 138 : 25 - 37
  • [28] SPARSE CONVOLUTION SUBSPACE CLUSTERING
    Luo, Chuan
    Zhao, Linchang
    Zhang, Taiping
    [J]. PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2020, : 31 - 35
  • [29] A survey on sparse subspace clustering
    Wang, Wei-Wei
    Li, Xiao-Ping
    Feng, Xiang-Chu
    Wang, Si-Qi
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (08): : 1373 - 1384
  • [30] Noisy Sparse Subspace Clustering
    Wang, Yu-Xiang
    Xu, Huan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17