Comparison of Feature Extraction for Accent Dependent Thai Speech Recognition System

被引:0
|
作者
Tantisatirapong, Suchada [1 ]
Prasoproek, Chalisa [1 ]
Phothisonothai, Montri [2 ]
机构
[1] Srinakharinwirot Univ, Dept Biomed Engn, Ongkharak 26120, Nakhon Nayok, Thailand
[2] King Mongkuts Inst Technol Ladkrabang, Int Coll, Bangkok 10520, Thailand
关键词
Accents classification; feature extraction; energy spectral density; power spectral density; mel-frequency cepstral coefficients; spectrogram; support vector machine; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims to compare the feature extraction methods for accent dependent Thai speech from three regions including central, southern and northeastern regions. We investigate four frequency analysis methods: i.e., Energy Spectral Density (ESD), Power Spectral Density (PSD), Mel-Frequency Cepstral Coefficients (MFCC) and Spectrogram (SPT). Radial basis function kernel based on support vector machine is used as a classifier with 5-fold cross validation. The isolated speech data sets are recorded from 30 male and 30 female participants speaking the 10 Thai digits from 0 to 9. The MFCC-based feature gives better accuracy than ESD, PSD and SPT respectively. For within the same region, the MFCC-based feature provides average accuracy of 94.9% and 99.1% for male and female voices respectively. For the three regions, the MFCC-based feature provides average accuracy of 89.34% and 93.81% for male and female voices, respectively.
引用
下载
收藏
页码:322 / 325
页数:4
相关论文
共 50 条
  • [41] Applying feature extraction of speech recognition on VOIP auditing
    Wang, Xuan
    Lin, Jiancheng
    Sun, Yong
    2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL 1, PROCEEDINGS, 2007, : 237 - +
  • [42] Modified feature extraction methods in robust speech recognition
    Rajnoha, Josef
    Pollak, Petr
    2007 17TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, VOLS 1 AND 2, 2007, : 337 - +
  • [43] A Salient Feature Extraction Algorithm for Speech Emotion Recognition
    Liang, Ruiyu
    Tao, Huawei
    Tang, Guichen
    Wang, Qingyun
    Zhao, Li
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (09): : 1715 - 1718
  • [44] Soft Margin Feature Extraction for Automatic Speech Recognition
    Li, Jinyu
    Lee, Chin-Hui
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 293 - 296
  • [45] On the use of kernel PCA for feature extraction in speech recognition
    Lima, A
    Zen, H
    Nankaku, Y
    Miyajima, C
    Tokuda, K
    Kitamura, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (12) : 2802 - 2811
  • [46] APPLYING FEATURE EXTRACTION OF SPEECH RECOGNITION ON VOIP AUDITING
    Wang, Xuan
    Lin, Jiancheng
    Sun, Yong
    Gan, Haibo
    Yao, Lin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (07): : 1851 - 1856
  • [47] Applying sparse KPCA for feature extraction in speech recognition
    Lima, A
    Zen, H
    Nankaku, Y
    Tokuda, K
    Kitamura, T
    Resende, FG
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (03): : 401 - 409
  • [48] Discriminative temporal feature extraction for robust speech recognition
    Shen, JL
    ELECTRONICS LETTERS, 1997, 33 (19) : 1598 - 1600
  • [49] Distinctive phonetic feature extraction for robust speech recognition
    Fukuda, T
    Yamamoto, W
    Nitta, T
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SPEECH II; INDUSTRY TECHNOLOGY TRACKS; DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS; NEURAL NETWORKS FOR SIGNAL PROCESSING, 2003, : 25 - 28
  • [50] Survey on Acoustic Modeling and Feature Extraction for Speech Recognition
    Garg, Anjali
    Sharma, Poonam
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 2291 - 2295