Feynman approximation to integrals with respect to Brownian sheet on Lie groups

被引:1
|
作者
Kalinichenko, A. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119991, Russia
关键词
Brownian sheet; Feynman; functional integration; MANIFOLDS; MOTION;
D O I
10.1142/S0219025715500083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Feynman-type approximations to functional integrals over the distribution of the Brownian sheet on a compact connected Lie group M, which give a representation of the integrals over the functional space C([0, 1] x [0, 1], M) as the limit of integrals over the finite-dimensional manifolds M x center dot center dot center dot x M. The known approximation formulas for the one-parameter Brownian motion are generalized to the case of the Brownian sheet.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Random variables as pathwise integrals with respect to fractional Brownian motion
    Mishura, Yuliya
    Shevchenko, Georgiy
    Valkeila, Esko
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (06) : 2353 - 2369
  • [32] Properties of fuzzy Ito integrals with respect to fuzzy Brownian motion
    Panda, S.
    Dash, J. K.
    Panda, G. B.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5113 - 5124
  • [33] ORBITAL INTEGRALS OF REDUCTIVE LIE-GROUPS
    BOUAZIZ, A
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1994, 27 (05): : 573 - 609
  • [34] IWASAWA THEOREM AND INTEGRALS ON LIE-GROUPS
    SCHINDLER, W
    MATHEMATISCHE NACHRICHTEN, 1993, 162 : 315 - 327
  • [35] On connected Lie groups and the approximation property
    Knudby, Soren
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (07) : 697 - 699
  • [36] High-energy approximation of one-loop Feynman integrals
    Roth, M
    Denner, A
    NUCLEAR PHYSICS B, 1996, 479 (1-2) : 495 - 514
  • [37] Diophantine approximation on matrices and Lie groups
    Aka, Menny
    Breuillard, Emmanuel
    Rosenzweig, Lior
    de Saxce, Nicolas
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (01) : 1 - 57
  • [38] Diophantine approximation on matrices and Lie groups
    Menny Aka
    Emmanuel Breuillard
    Lior Rosenzweig
    Nicolas de Saxcé
    Geometric and Functional Analysis, 2018, 28 : 1 - 57
  • [39] Time-Slicing Approximation of Feynman Path Integrals on Compact Manifolds
    Fukushima, Shota
    ANNALES HENRI POINCARE, 2021, 22 (11): : 3871 - 3914
  • [40] On approximation of Lie groups by discrete subgroups
    Hamrouni, Hatem
    Souissi, Salah
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (01): : 37 - 55