Feynman approximation to integrals with respect to Brownian sheet on Lie groups

被引:1
|
作者
Kalinichenko, A. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119991, Russia
关键词
Brownian sheet; Feynman; functional integration; MANIFOLDS; MOTION;
D O I
10.1142/S0219025715500083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Feynman-type approximations to functional integrals over the distribution of the Brownian sheet on a compact connected Lie group M, which give a representation of the integrals over the functional space C([0, 1] x [0, 1], M) as the limit of integrals over the finite-dimensional manifolds M x center dot center dot center dot x M. The known approximation formulas for the one-parameter Brownian motion are generalized to the case of the Brownian sheet.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Stochastic integrals and Brownian motion on abstract nilpotent Lie groups
    Melcher, Tai
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (04) : 1159 - 1185
  • [2] Various types of stochastic integrals with respect to fractional Brownian sheet and their applications
    Kim, Yoon Tae
    Jeon, Jong Woo
    Park, Hyun Suk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1382 - 1398
  • [3] STATIONARY PHASE APPROXIMATION OF FEYNMAN PATH INTEGRALS
    LAM, CS
    NUOVO CIMENTO A, 1967, 47 (03): : 451 - +
  • [4] On the approximation of Feynman-Kac path integrals
    Bond, SD
    Laird, BB
    Leimkuhler, BJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (02) : 472 - 483
  • [5] Approximation of a Wiener process by integrals with respect to the fractional Brownian motion of power function of a given exponent
    Banna, O. L.
    Mishura, Yu. S.
    Shklyar, S. V.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 90 : 13 - 21
  • [6] Stratonovich Calculus with Respect to Fractional Brownian Sheet
    Kim, Yoon Tae
    Park, Hyun Suk
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (05) : 962 - 983
  • [7] Systematic approximation of multi-scale Feynman integrals
    Borowka, Sophia
    Gehrmann, Thomas
    Hulme, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [8] Systematic approximation of multi-scale Feynman integrals
    Sophia Borowka
    Thomas Gehrmann
    Daniel Hulme
    Journal of High Energy Physics, 2018
  • [9] Wick integration with respect to fractional Brownian sheet
    Yoon Tae Kim
    Journal of the Korean Statistical Society, 2010, 39 : 523 - 531
  • [10] Wick integration with respect to fractional Brownian sheet
    Kim, Yoon Tae
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (04) : 523 - 531