Mid/far-infrared semiconductor devices exploiting plasmonic effects

被引:0
|
作者
Colombelli, R. [1 ,2 ]
Chassagneux, Y. [1 ,2 ]
Bousseksou, A. [1 ,2 ]
Moreau, V. [1 ,2 ]
Barbieri, S. [3 ,4 ]
Sirtori, C. [3 ,4 ]
Patriarche, G. [5 ]
Beaudoin, G. [5 ]
Sagnes, I. [5 ]
Beere, H. E. [6 ]
Ritchie, D. A. [6 ]
机构
[1] Univ Paris 11, Inst Elect Fondamentale, F-91405 Orsay, France
[2] CNRS, UMR 8622, F-91405 Orsay, France
[3] Univ Paris 07, Lab MPQ, F-75013 Paris, France
[4] CNRS, UMR 7162, F-75013 Paris, France
[5] CNRS, LPN, F-91460 Marcoussis, France
[6] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
关键词
Mid-infrared; THz; quantum cascade lasers; surface-plasmons; QUANTUM-CASCADE LASERS; CONTINUOUS-WAVE; ROOM-TEMPERATURE; OPERATION; MODE; PERFORMANCE; GUIDES;
D O I
10.1117/12.814892
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We show how metallic waveguides offer the opportunity of implementing interesting functionalities for semiconductor lasers within a simple technological approach. In the THz, we show that the active region thickness of quantum cascade lasers can be reduced by a factor of 2 without effects on the threshold current density and maximum operating temperature of the laser. Pulsed and continuous-wave operation - with a low threshold J(th)= 71 A/cm(2) - are obtained for a 5.86-mu m-thick THz QC laser. The emission is peaked at lambda approximate to 115 mu m and the waveguide resonator is based on a metal-metal geometry. In the mid-infrared, we demonstrate surface-plasmon distributed-feedback quantum cascade lasers with a first-order grating realised by the sole patterning the top metallic contact. The devices have a single mode emission with a side-mode suppression ratio greater than 20dB. The emission wavelength at 78K is centred at lambda = 7.3 mu m and has tuning rate as a function of the temperature of approximate to 0.4 nm/K.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [21] Mid- to far-infrared spectroscopy of Sharpless 171
    Okada, Y
    Onaka, T
    Shibai, H
    Doi, Y
    ASTRONOMY & ASTROPHYSICS, 2003, 412 (01) : 199 - 212
  • [22] Mid- and far-infrared astronomy mission SPICA
    Nakagawa, Takao
    Murakami, Hiroshi
    ADVANCES IN SPACE RESEARCH, 2007, 40 (05) : 679 - 683
  • [23] Reflectivity and phase shift of semiconductor far-infrared mirrors
    Xu, Min
    Zhang, Yue-Heng
    Shen, Wen-Zhong
    Wuli Xuebao/Acta Physica Sinica, 2007, 56 (04): : 2415 - 2421
  • [24] Reflectivity and phase shift of semiconductor far-infrared mirrors
    Xu Min
    Zhang Yue-Heng
    Shen Wen-Zhong
    ACTA PHYSICA SINICA, 2007, 56 (04) : 2415 - 2421
  • [25] SPECIAL ISSUE - FAR-INFRARED SEMICONDUCTOR-LASERS
    GORNIK, E
    ANDRONOV, AA
    OPTICAL AND QUANTUM ELECTRONICS, 1991, 23 : R5 - R5
  • [26] FAR-INFRARED SPECTROSCOPY OF PHONONS AND PLASMONS IN SEMICONDUCTOR SUPERLATTICES
    DUMELOW, T
    PARKER, TJ
    SMITH, SRP
    TILLEY, DR
    SURFACE SCIENCE REPORTS, 1993, 17 (03) : 151 - 212
  • [27] Generation and coherent detection of far-infrared and mid-infrared radiation
    Nahata, A
    Cao, H
    Linke, RA
    Heinz, TF
    2002 IEEE/LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2002, : 865 - 866
  • [28] Mid/far-infrared few-cycle-pulse emission via resonant mixing in semiconductor heterostructures
    Pestov, DS
    Belyanin, AA
    Kocharovsky, VV
    Kocharovsky, VV
    Scully, MO
    JOURNAL OF MODERN OPTICS, 2004, 51 (16-18) : 2523 - 2531
  • [29] Joint Use of Far-Infrared and Mid-Infrared Observation for Sounding Retrievals: Learning From the Past for Upcoming Far-Infrared Missions
    Xie, Yan
    Huang, Xianglei
    Chen, Xiuhong
    L'Ecuyer, Tristan S.
    Drouin, Brian J.
    EARTH AND SPACE SCIENCE, 2023, 10 (03)
  • [30] Quantum dot carrier dynamics and far-infrared devices
    Bhattacharya, P
    Krishna, S
    Phillips, JD
    Klotzkin, D
    McCann, PJ
    OPTOELECTRONIC MATERIALS AND DEVICES II, 2000, 4078 : 84 - 89