NON-AUTONOMOUS WEAKLY DAMPED PLATE MODEL ON TIME-DEPENDENT DOMAINS

被引:0
|
作者
Zhang, Penghui [1 ]
Feng, Zhaosheng [2 ]
Yang, Lu [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
来源
关键词
non-cylindrical domain; non-autonomous system; pull-back attractor; critical exponent; Plate equation; FREE-BOUNDARY PROBLEM; WAVE-EQUATIONS; GLOBAL ATTRACTORS; CRITICAL EXPONENT; EXISTENCE; DYNAMICS; SYSTEM;
D O I
10.3934/dcdss.2021076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with dynamics of the weakly damped plate equation on a time-dependent domain. Under the assumption that the domain is time-like and expanding, we obtain the existence of time-dependent attractors, where the nonlinear term has a critical growth.
引用
收藏
页码:3319 / 3336
页数:18
相关论文
共 50 条
  • [31] Asymptotic profiles and critical exponents for a semilinear damped plate equation with time-dependent coefficients
    D'Abbicco, Marcello
    Ebert, Marcelo Rempel
    ASYMPTOTIC ANALYSIS, 2021, 123 (1-2) : 1 - 40
  • [32] On pullback attractor for non-autonomous weakly dissipative wave equations
    Yan, Xingjie
    Zhong, Chengkui
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (01): : 97 - 108
  • [33] NON-AUTONOMOUS APPROXIMATIONS GOVERNED BY THE FRACTIONAL POWERS OF DAMPED WAVE OPERATORS
    Nascimento, Marcelo J. D.
    Bezerra, Flank D. M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [34] Stability on Time-Dependent Domains
    E. Knobloch
    R. Krechetnikov
    Journal of Nonlinear Science, 2014, 24 : 493 - 523
  • [35] Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation
    Li, Hongyan
    Zhou, Shengfan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (09) : 3579 - 3586
  • [36] Stability on Time-Dependent Domains
    Knobloch, E.
    Krechetnikov, R.
    JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (03) : 493 - 523
  • [37] Kernel sections for damped non-autonomous wave equations with critical exponent
    Zhou, SF
    Wang, LS
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (02) : 399 - 412
  • [38] A Generalized Non-Autonomous SIRVS Model
    Silva, Cesar M.
    Pereira, Edgar
    da Silva, Jacques A. L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 583 - +
  • [39] STABILITY OF A NON-AUTONOMOUS ECOSYSTEM MODEL
    PARKER, RA
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1975, 6 (02) : 197 - 200
  • [40] Convergence of non-autonomous discrete-time Hopfield model with delays
    Yuan, Lifen
    Yuan, Zhaohui
    He, Yigang
    NEUROCOMPUTING, 2009, 72 (16-18) : 3802 - 3808