Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3

被引:30
|
作者
Gruber, John B. [1 ]
Burdick, Gary W. [2 ]
Chandra, Sreerenjini [1 ]
Sardar, Dhiraj K. [1 ]
机构
[1] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA
[2] Andrews Univ, Dept Phys, Berrien Springs, MI 49104 USA
基金
美国国家科学基金会;
关键词
CRYSTAL-FIELD ANALYSIS; RARE-EARTH IONS; UP-CONVERSION; ENERGY-LEVELS; OPTICAL-SPECTRA; PARAMETRIZATIONS; LANTHANIDES;
D O I
10.1063/1.3465615
中图分类号
O59 [应用物理学];
学科分类号
摘要
The ultraviolet (uv) absorption spectra, representing transitions to all energy levels below 44 500 cm(-1) of trivalent erbium (Er3+), have been analyzed for the crystal-field splitting of the multiplet manifolds L-2S+1(J) of Er3+(4f(11)) in C-2 symmetry cation sites in single-crystal cubic Er2O3 and Er3+:Y2O3. A solid solution, without a change in the local symmetry, exists between the two compounds, allowing us to identify the weaker transitions in Er3+:Y2O3 from the stronger transitions observed in the uv spectrum of Er2O3. As a result, we have identified a complete set of energy (Stark) levels for the electronic configuration up to the absorption band-edge of these crystals. A total of 134 Stark levels representing 30 multiplets with energies as high as 44 500 cm(-1) have been modeled using a parameterized Hamiltonian defined to operate within the Er3+(4f(11)) electronic configuration. The crystal-field parameters were determined through use of a Monte Carlo method in which 14 independent crystal-field parameters, B-q(k), were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting standard deviations between 134 calculated-to-experimental Stark levels are 5.55 cm(-1) (rms error 4.89 cm(-1)) and 5.08 cm(-1) (rms error 4.47 cm(-1)) for Er3+ in Er2O3 and for Er3+ in Y2O3, respectively. The excellent and consistent agreement between the experimental and calculated Stark levels in both crystals, together with the predicted sets of wave functions, are important for the ongoing analyses of intensity data and magneto-optical studies on these crystals. (C) 2010 American Institute of Physics. [doi:10.1063/1.3465615]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Infrared Luminescence of Y2O2S:Er3+ and Y2O3:Er3+
    A. N. Georgobiani
    A. N. Gruzintsev
    C. Barthou
    P. Benalloul
    Inorganic Materials, 2004, 40 : 840 - 844
  • [2] Spectra and energy levels of Er3+ in Er2O3 powder
    Dammak, M.
    Zhang, De-Long
    Journal of Alloys and Compounds, 2006, 407 (1-2): : 8 - 15
  • [3] Spectra and energy levels of Er3+ in Er2O3 powder
    Dammak, M
    Zhang, DL
    JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 407 (1-2) : 8 - 15
  • [4] Luminescent Properties of Y2O3:Er3+
    A. N. Georgobiani
    A. N. Gruzintsev
    T. V. Nikiforova
    C. Barthou
    P. Benalloul
    Inorganic Materials, 2002, 38 : 1008 - 1011
  • [5] Luminescent properties Y2O3:Er3+
    Georgobiani, AN
    Gruzintsev, AN
    Nikiforova, TV
    Barthou, C
    Benalloul, P
    INORGANIC MATERIALS, 2002, 38 (10) : 1008 - 1011
  • [6] YAG:Er3+, CaF2:Er3+, and Er2O3 EMISSION SPECTRA UNDER LASER AND LASER THERMAL EXCITATION
    Marchenko, V. M.
    JOURNAL OF APPLIED SPECTROSCOPY, 2018, 85 (02) : 246 - 249
  • [7] YAG:Er3+, CaF2:Er3+, and Er2O3 Emission Spectra Under Laser and Laser Thermal Excitation
    V. M. Marchenko
    Journal of Applied Spectroscopy, 2018, 85 : 246 - 249
  • [8] PARAMAGNETISCHE RESONANZ VON ER3+ IN Y2O3
    SCHAFER, G
    SCHELLER, S
    PHYSIK DER KONDENSITERTEN MATERIE, 1966, 5 (01): : 48 - +
  • [9] Synthesis of Er3+ Doped Y2O3 Nanophosphors
    Venkatachalam, Nallusamy
    Saito, Yu
    Soga, Kohei
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (05) : 1006 - 1010
  • [10] Infrared luminescence Y2O2S:Er3+ andY2O3:Er3+
    Georgobiani, AN
    Gruzintsev, AN
    Barthou, C
    Benalloul, P
    INORGANIC MATERIALS, 2004, 40 (08) : 840 - 844