A new lower bound on the t-parameter of (t, s)-sequences

被引:7
|
作者
Schuerer, Rudolf [1 ]
机构
[1] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
关键词
D O I
10.1007/978-3-540-74496-2_37
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let t(b) (s) denote the least t such that a (t, s)-sequence in base b exists. We present a new lower bound on t(b)(s), namely t(b)(s) > 1/b-1s-1/b-1-1/log b-log(b)(1+s(1-1/b+log(b)s)log b), which leads to the new asymptotic result L-b* := lim(s ->infinity) inf t(b)(s)/s >= 1/b-1. The best previously known result has been L-b* >= 1/b for arbitrary b >= 2 and L-2* >= log(2) 3-1.
引用
收藏
页码:623 / 632
页数:10
相关论文
共 50 条
  • [31] The (s,t)-Generalized Jacobsthal Matrix Sequences
    Uygun, Sukran
    Uslu, Kemal
    COMPUTATIONAL ANALYSIS, AMAT 2015, 2016, 155 : 325 - 336
  • [32] On the (s,t)-fibonacci and fibonacci matrix sequences
    Civciv, Haci
    Turkmen, Ramazan
    ARS COMBINATORIA, 2008, 87 : 161 - 173
  • [33] Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences
    Kritzer, P
    JOURNAL OF COMPLEXITY, 2006, 22 (03) : 336 - 347
  • [34] Appendix to the paper by T. Luczak - A simple proof of the lower bound
    Feng, DJ
    Wu, J
    Liang, JC
    Tseng, SJ
    MATHEMATIKA, 1997, 44 (87) : 54 - 55
  • [35] LOWER BOUND FOR UPSILON IN A T-(UPSILON, KAPPA, LAMBDA) DESIGN
    VANTILBORG, H
    DISCRETE MATHEMATICS, 1976, 14 (04) : 399 - 402
  • [36] Lower bound of the quadratic spans of Debruijn sequences
    Khachatrian, Levon H.
    Designs, Codes, and Cryptography, 1993, 3 (01)
  • [37] A lower bound for the chaotic control parameter of Wang-Smith's CSA
    Zheng, Liying
    Tian, Kai
    FIRST INTERNATIONAL MULTI-SYMPOSIUMS ON COMPUTER AND COMPUTATIONAL SCIENCES (IMSCCS 2006), PROCEEDINGS, VOL 2, 2006, : 344 - +
  • [38] New lower bounds for t-coverings
    Horsley, Daniel
    Singh, Rakhi
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (08) : 369 - 386
  • [39] A dual plotkin bound for (T, M, S)-nets
    Martin, William J.
    Visentin, Terry I.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) : 411 - 415
  • [40] Another random scrambling of digital (t, s)-sequences
    Faure, H
    Tezuka, S
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 242 - 256