RNA-QC-chain: comprehensive and fast quality control for RNA-Seq data

被引:38
|
作者
Zhou, Qian [1 ,2 ]
Su, Xiaoquan [3 ,4 ,5 ]
Jing, Gongchao [3 ,4 ]
Chen, Songlin [1 ,2 ]
Ning, Kang [6 ]
机构
[1] Chinese Acad Fishery Sci, Key Lab Sustainable Dev Marine Fisheries, Minist Agr, Yellow Sea Fisheries Res Inst, Qingdao 266071, Shandong, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266071, Shandong, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biofuels, Shandong Key Lab Energy Genet, Qingdao 266101, Shandong, Peoples R China
[4] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Single Cell Ctr, Qingdao 266101, Shandong, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Hubei Key Lab Bioinformat & Mol Imaging, Minist Educ,Key Lab Mol Biophys,Dept Bioinformat, Wuhan 430074, Hubei, Peoples R China
来源
BMC GENOMICS | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
Quality control; RNA-Seq; Contamination identification; Alignment statistics; Parallel computing;
D O I
10.1186/s12864-018-4503-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: RNA-Seq has become one of the most widely used applications based on next-generation sequencing technology. However, raw RNA-Seq data may have quality issues, which can significantly distort analytical results and lead to erroneous conclusions. Therefore, the raw data must be subjected to vigorous quality control (QC) procedures before downstream analysis. Currently, an accurate and complete QC of RNA-Seq data requires of a suite of different QC tools used consecutively, which is inefficient in terms of usability, running time, file usage, and interpretability of the results. Results: We developed a comprehensive, fast and easy-to-use QC pipeline for RNA-Seq data, RNA-QC-Chain, which involves three steps: (1) sequencing-quality assessment and trimming; (2) internal (ribosomal RNAs) and external (reads from foreign species) contamination filtering; (3) alignment statistics reporting (such as read number, alignment coverage, sequencing depth and pair-end read mapping information). This package was developed based on our previously reported tool for general QC of next-generation sequencing (NGS) data called QC-Chain, with extensions specifically designed for RNA-Seq data. It has several features that are not available yet in other QC tools for RNA-Seq data, such as RNA sequence trimming, automatic rRNA detection and automatic contaminating species identification. The three QC steps can run either sequentially or independently, enabling RNA-QC-Chain as a comprehensive package with high flexibility and usability. Moreover, parallel computing and optimizations are embedded in most of the QC procedures, providing a superior efficiency. The performance of RNA-QC-Chain has been evaluated with different types of datasets, including an in-house sequencing data, a semi-simulated data, and two real datasets downloaded from public database. Comparisons of RNA-QC-Chain with other QC tools have manifested its superiorities in both function versatility and processing speed. Conclusions: We present here a tool, RNA-QC-Chain, which can be used to comprehensively resolve the quality control processes of RNA-Seq data effectively and efficiently.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [42] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [43] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [44] RNA2HLA: HLA-based quality control of RNA-seq datasets
    Chelysheva, Irina
    Pollard, Andrew J.
    O'Connor, Daniel
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [45] RNA-SeQC 2: efficient RNA-seq quality control and quantification for large cohorts
    Graubert, Aaron
    Aguet, Francois
    Ravi, Arvind
    Ardlie, Kristin G.
    Getz, Gad
    BIOINFORMATICS, 2021, 37 (18) : 3048 - 3050
  • [46] Performance evaluation of lossy quality compression algorithms for RNA-seq data
    Rongshan Yu
    Wenxian Yang
    Shun Wang
    BMC Bioinformatics, 21
  • [47] The Mechanisms of Maize Resistance to Fusarium verticillioides by Comprehensive Analysis of RNA-seq Data
    Wang, Yanping
    Zhou, Zijian
    Gao, Jingyang
    Wu, Yabin
    Xia, Zongliang
    Zhang, Huiyong
    Wu, Jianyu
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [48] Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa
    Chaobo Tong
    Xiaowu Wang
    Jingyin Yu
    Jian Wu
    Wanshun Li
    Junyan Huang
    Caihua Dong
    Wei Hua
    Shengyi Liu
    BMC Genomics, 14
  • [49] Performance evaluation of lossy quality compression algorithms for RNA-seq data
    Yu, Rongshan
    Yang, Wenxian
    Wang, Shun
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [50] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    Genome Biology, 14