Improving Structural and Moisture Stability of P2-Layered Cathode Materials for Sodium-Ion Batteries

被引:37
|
作者
Jiang, Jinsen [1 ]
He, Hung-Chieh [2 ]
Cheng, Chen [1 ]
Yan, Tianran [1 ]
Xia, Xiao [1 ]
Ding, Manling [1 ]
He, Le [1 ]
Chan, Ting-Shan [2 ]
Zhang, Liang [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; cathode materials; XAFS; structural stability; moisture stability; HIGH-RATE CAPABILITY; HIGH-ENERGY DENSITY; LAYERED OXIDE; ANIONIC REDOX; ELECTRODES; CO; NA2/3NI1/3MN2/3O2; SUBSTITUTION; PERFORMANCE; EVOLUTION;
D O I
10.1021/acsaem.1c03656
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P2-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries (SIBs). However, ground challenges, e.g., irreversible phase transition during cycling, moisture instability, and inferior electrochemical performance, greatly impede their practical applications. Herein, a series of Cu-substituted P2-Na0.6Ni0.3-xMn0.7CuxO2 (0 <= x <= 0.2) cathode materials for SIBs are fabricated and the mechanisms responsible for their improved electrochemical performances are comprehensively investigated. It is discovered that Cu dopants with strong electronegativity could stabilize the crystal structure by inhibiting the common P2-O2 phase transition, leading to improved cycling stability. The expanded interlayer spacing after Cu doping is facilitated for the charge transfer kinetics, which ensures excellent rate performance. In addition, all Ni, Mn, Cu, and O participate in the charge compensation upon sodiation and desodiation through reversible redox reactions. More importantly, Cu substitution improves the moisture stability of the cathode materials because the Cu2+/Cu3+ redox couple increases the initial charging potential. This work provides a promising guidance for the design of low-cost, high-performance, and air-stable cathode materials with both cationic and anionic redox activities for SIBs.
引用
收藏
页码:1252 / 1261
页数:10
相关论文
共 50 条
  • [21] Investigation on the Air Stability of P2-Layered Transition Metal Oxides by Nb Doping in Sodium Ion Batteries
    Chen, Yanyan
    Shi, Qinhao
    Zhao, Shengyu
    Feng, Wuliang
    Liu, Yang
    Yang, Xinxin
    Wang, Zhenwei
    Zhao, Yufeng
    BATTERIES-BASEL, 2023, 9 (03):
  • [22] Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: Structural evolution and anion redox
    Liu, Jiatu
    Kan, Wang Hay
    Ling, Chris D.
    JOURNAL OF POWER SOURCES, 2021, 481
  • [23] Pinning Effect Enhanced Structural Stability toward a Zero-Strain Layered Cathode for Sodium-Ion Batteries
    Chu, Shiyong
    Zhang, Chunchen
    Xu, Hang
    Guo, Shaohua
    Wang, Peng
    Zhou, Haoshen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (24) : 13366 - 13371
  • [24] Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries
    Gao, Suning
    Zhu, Zhuo
    Fang, Hengyi
    Feng, Kun
    Zhong, Jun
    Hou, Machuan
    Guo, Yihe
    Li, Fei
    Zhang, Wei
    Ma, Zifeng
    Li, Fujun
    ADVANCED MATERIALS, 2024,
  • [25] Research Progress on Ordering Structure of Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Gan L.
    Yao H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (01): : 148 - 157
  • [26] Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries
    Gao, Suning
    Zhu, Zhuo
    Fang, Hengyi
    Feng, Kun
    Zhong, Jun
    Hou, Machuan
    Guo, Yihe
    Li, Fei
    Zhang, Wei
    Ma, Zifeng
    Li, Fujun
    Advanced Materials, 2024, 36 (16)
  • [27] New family of layered N-based cathode materials for sodium-ion batteries
    Jiang, Yundan
    Xu, Wangping
    Zhao, Wei
    Cao, Juexian
    RSC ADVANCES, 2022, 12 (53) : 34200 - 34207
  • [28] MgO-Coated Layered Cathode Oxide With Enhanced Stability for Sodium-Ion Batteries
    Xue, Ling
    Bao, Shuo
    Yan, Ling
    Zhang, Yi
    Lu, Jinlin
    Yin, Yansheng
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [29] Recent Advances in Sodium-Ion Batteries: Cathode Materials
    Phan, Thang
    Kim, Il Tae
    MATERIALS, 2023, 16 (21)
  • [30] Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries
    Zhou, Jingkai
    Liu, Jing
    Li, Yanyan
    Zhao, Zhongjun
    Zhou, Pengfei
    Wu, Xiaozhong
    Tang, Xiaonan
    Zhou, Jin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 638 : 758 - 767