Nonlinear krylov subspace methods for solving nonsmooth equations

被引:0
|
作者
Meng, ZH [1 ]
Zhang, JJ [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
nonsmooth equations; Newton-FOM algorithm; Newton-GMRES algorithm;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Newton-FOM (Full Orthogonalization Method) algorithm and Newton-GMRES (Generalized Minimum Residual Method) algorithm for solving nonsmooth equations are presented. It is proved that these Krylov subspace algorithms have the locally quadratic convergence. Numerical experiments demonstrate the effectiveness of the algorithms.
引用
收藏
页码:1172 / 1180
页数:9
相关论文
共 50 条
  • [11] Preconditioned Krylov subspace methods for transport equations
    Oliveira, S
    Deng, YH
    PROGRESS IN NUCLEAR ENERGY, 1998, 33 (1-2) : 155 - 174
  • [12] The new Krylov subspace methods for solving tensor equations via T-product
    Nobakht-Kooshkghazi, Malihe
    Afshin, Hamidreza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [13] Krylov subspace methods for projected Lyapunov equations
    Stykel, T.
    Simoncini, V.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (01) : 35 - 50
  • [14] The new Krylov subspace methods for solving tensor equations via T-product
    Malihe Nobakht-Kooshkghazi
    Hamidreza Afshin
    Computational and Applied Mathematics, 2023, 42
  • [15] Solving Electromagnetic Scattering Problems by Underdetermined Equations and Krylov Subspace
    Cao, Xinyuan
    Chen, Mingsheng
    Qi, Qi
    Kong, Meng
    Hu, Jinhua
    Zhang, Liang
    Wu, Xianliang
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (06) : 541 - 544
  • [16] Krylov subspace type methods for solving projected generalized continuous-time Lyapunov equations
    Zhou, Yujian
    Lin, Yiqin
    Bao, Liang
    WSEAS Transactions on Mathematics, 2012, 11 (12) : 1114 - 1126
  • [17] KRYLOV SUBSPACE METHODS OF APPROXIMATE SOLVING DIFFERENTIAL EQUATIONS FROM THE POINT OF VIEW OF FUNCTIONAL CALCULUS
    Kurbatov, V. G.
    Kurbatova, I. V.
    EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (04): : 53 - 80
  • [18] PRECONDITIONED KRYLOV SUBSPACE METHODS FOR LYAPUNOV MATRIX EQUATIONS
    HOCHBRUCK, M
    STARKE, G
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (01) : 156 - 171
  • [19] Discrete Krylov subspace methods for equations of the second kind
    Moret, I
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 69 (3-4) : 351 - 369
  • [20] Multigrid and Krylov subspace methods for the discrete Stokes equations
    Elman, HC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 22 (08) : 755 - 770