A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B

被引:119
|
作者
Liu, J. [1 ]
Cui, Z. [1 ]
Ruan, L. [2 ]
机构
[1] Shanghai Jiao Tong Univ, Natl Die & Mold CAD Engn Res Ctr, Shanghai 200030, Peoples R China
[2] Kumamoto Univ, Dept Mech Engn, Kumamoto, Japan
关键词
Dynamic recrystallization (DRX); Kinetics model; Strain softening; Magnesium alloy AZ31B; FLOW-STRESS; MICROALLOYED STEELS; HOT DEFORMATION; AUSTENITE; BEHAVIOR; STRAIN; INITIATION; NB;
D O I
10.1016/j.msea.2011.09.032
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The classical kinetics models of dynamic recrystallization (DRX) in the form of Avrami function describe the development of DRX process to a large extent; however, because of the characteristics of exponent function, the conventional models cannot exactly exhibit the development speed of DRX process. Based on this analysis, a new kinetics model of DRX was proposed, which represents the 'slow-rapid-slow' property of DRX development. According to the new model, the development process of DRX can be divided into three phases: slow-beginning phase, rapid-increasing phase and slow-rising-to-balance phase. Because the turning point between the second phase and the third one corresponds to the inflexion from the faster velocity of DRX development to the slower one, the strain at this moment can be considered as the most appropriate and economic strain that guarantees fine grains and saves energy consumption. Take a typical metal characterized by DRX magnesium alloy AZ31B for instance, the Gleeble-1500 thermomechanical simulation compression tests were conducted together with microscopic examination, according to which the model parameters were determined. Statistics shows that the experimental results are in good agreement with the predicted values, which validates the accuracy of the new kinetics model. (C) 2011 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:300 / 310
页数:11
相关论文
共 50 条
  • [21] Stress-strain of uniaxial tension and recrystallization structures of AZ31B magnesium alloy
    Zhang Qinglai
    Hu Yongxue
    Wang Lili
    RARE METAL MATERIALS AND ENGINEERING, 2008, 37 (04) : 678 - 681
  • [22] Effect of Dynamic Recrystallization on Grain Refinement during Interactive Alternating Forward Extrusion of AZ31B Magnesium Alloy
    Yu Wang
    Feng Li
    Ye Wang
    Lei Gao
    Journal of Materials Engineering and Performance, 2020, 29 : 2748 - 2756
  • [23] Cytotoxicity of AZ31B magnesium alloy covering with magnesium oxide
    Guo Lei
    Liu Kui
    Zhang Shiliang
    Huang Jingjing
    Tan Lili
    Yang Ke
    RARE METAL MATERIALS AND ENGINEERING, 2008, 37 (06) : 1027 - 1031
  • [24] A constitutive and fracture model for AZ31B magnesium alloy in the tensile state
    Feng, Fei
    Huang, Shangyu
    Meng, Zhenghua
    Hu, Jianhua
    Lei, Yu
    Zhou, Mengcheng
    Yang, Zhenzhen
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 594 : 334 - 343
  • [25] New Method for Improving Formability of AZ31B Magnesium Alloy Sheets
    Huang, Guangsheng
    Xu, Wei
    Huang, Guangjie
    Li, Hongcheng
    Pan, Fusheng
    MATERIALS RESEARCH, PTS 1 AND 2, 2009, 610-613 : 737 - 741
  • [26] Initial ballistic evaluation of the magnesium alloy AZ31B
    Jones, Tyrone L.
    DeLorme, Richard D.
    Burkins, Matthew S.
    Gooch, William A.
    MAGNESIUM TECHNOLOGY 2007, 2007, : 189 - +
  • [27] Plastic anisotropy of magnesium alloy AZ31B sheet
    Agnew, SR
    MAGNESIUM TECHNOLOGY 2002, 2002, : 169 - 174
  • [28] INFLUENCE OF TEMPERATURE ON FORMABILITY OF MAGNESIUM ALLOY AZ31B
    Solfronk, Pavel
    Sobotka, Jiri
    Kolnerova, Michaela
    Zuzanek, Lukas
    METAL 2014: 23RD INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2014, : 1045 - 1050
  • [29] The effect of specimen size on the dynamic compressive behaviour of magnesium alloy AZ31B
    Xiao, Jing
    Shu, Dong Wei
    ADVANCES IN ENGINEERING PLASTICITY XI, 2013, 535-536 : 141 - 144
  • [30] Forgeability of AZ31B magnesium alloy in warm forging
    Zhang, XH
    Ruan, XY
    Osakada, K
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2003, 13 (03) : 632 - 635