ROBUST FACTOR ANALYSIS USING THE MULTIVARIATE t-DISTRIBUTION

被引:11
|
作者
Zhang, Jianchun [1 ]
Li, Jia [2 ]
Liu, Chuanhai [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Bayesian methods; EM-type algorithms; Gibbs sampling; multivariate t-distribution; robust factor analysis; MAXIMUM-LIKELIHOOD-ESTIMATION; BAYESIAN FACTOR-ANALYSIS; INCOMPLETE DATA; FRACTIONATED EXPERIMENTS; REGRESSION-MODEL; ECME ALGORITHM; CENSORED-DATA; EM ALGORITHM; MISSING DATA;
D O I
10.5705/ss.2012.342
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Factor analysis is a standard method for multivariate analysis. The sampling model in the most popular factor analysis is Gaussian and has thus often been criticized for its lack of robustness. A simple robust extension of the Gaussian factor analysis model is obtained by replacing the multivariate Gaussian distribution with a multivariate t-distribution. We develop computational methods for both maximum likelihood estimation and Bayesian estimation of the factor analysis model. The proposed methods include the ECME and PX-EM algorithms for maximum likelihood estimation and Gibbs sampling methods for Bayesian inference. Numerical examples show that use of multivariate t-distribution improves the robustness for the parameter estimation in factor analysis.
引用
收藏
页码:291 / 312
页数:22
相关论文
共 50 条
  • [31] CONVERGENCE BEHAVIOR OF THE EM ALGORITHM FOR THE MULTIVARIATE T-DISTRIBUTION
    ARSLAN, O
    CONSTABLE, PDL
    KENT, JT
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (12) : 2981 - 3000
  • [32] A robust time scale for space applications using the student's t-distribution
    McPhee, Hamish
    Tourneret, Jean-Yves
    Valat, David
    Delporte, Jerome
    Gregoire, Yoan
    Paimblanc, Philippe
    [J]. METROLOGIA, 2024, 61 (05)
  • [33] Robust Power System State Estimation Using t-Distribution Noise Model
    Chen, Tengpeng
    Sun, Lu
    Ling, Keck-Voon
    Ho, Weng Khuen
    [J]. IEEE SYSTEMS JOURNAL, 2020, 14 (01): : 771 - 781
  • [35] Functional Mapping of Dynamic Traits with Robust t-Distribution
    Wu, Cen
    Li, Gengxin
    Zhu, Jun
    Cui, Yuehua
    [J]. PLOS ONE, 2011, 6 (09):
  • [36] Comparing Asset Pricing Factor Models under Multivariate t-Distribution: Evidence from China
    Sun, Xi
    Chen, Yihao
    Chen, Yulin
    Lou, Zhusheng
    Tao, Lingfeng
    Zhang, Yihao
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [37] Robust natural image segmentation by using spatially constrained multivariate mixed Student's t-distribution and TV flow edge
    Yang, Yong
    Guo, Ling
    Ye, Yangdong
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 178 - 196
  • [38] Robust nonlinear system identification: Bayesian mixture of experts using the t-distribution
    Baldacchino, Tara
    Worden, Keith
    Rowson, Jennifer
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 : 977 - 992
  • [39] Improved estimation of the degree of freedom parameter of multivariate t-distribution
    Pascal, Frederic
    Ollila, Esa
    Palomar, Daniel P.
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 860 - 864
  • [40] Bayesian asset pricing testing under multivariate t-distribution
    Zhang, Heng
    Wang, Nianling
    Li, Yong
    Zhan, Yiwei
    [J]. APPLIED ECONOMICS LETTERS, 2019, 26 (11) : 898 - 901