ROBUST FACTOR ANALYSIS USING THE MULTIVARIATE t-DISTRIBUTION

被引:11
|
作者
Zhang, Jianchun [1 ]
Li, Jia [2 ]
Liu, Chuanhai [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Bayesian methods; EM-type algorithms; Gibbs sampling; multivariate t-distribution; robust factor analysis; MAXIMUM-LIKELIHOOD-ESTIMATION; BAYESIAN FACTOR-ANALYSIS; INCOMPLETE DATA; FRACTIONATED EXPERIMENTS; REGRESSION-MODEL; ECME ALGORITHM; CENSORED-DATA; EM ALGORITHM; MISSING DATA;
D O I
10.5705/ss.2012.342
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Factor analysis is a standard method for multivariate analysis. The sampling model in the most popular factor analysis is Gaussian and has thus often been criticized for its lack of robustness. A simple robust extension of the Gaussian factor analysis model is obtained by replacing the multivariate Gaussian distribution with a multivariate t-distribution. We develop computational methods for both maximum likelihood estimation and Bayesian estimation of the factor analysis model. The proposed methods include the ECME and PX-EM algorithms for maximum likelihood estimation and Gibbs sampling methods for Bayesian inference. Numerical examples show that use of multivariate t-distribution improves the robustness for the parameter estimation in factor analysis.
引用
收藏
页码:291 / 312
页数:22
相关论文
共 50 条
  • [1] Robust mixture modelling using multivariate t-distribution with missing information
    Wang, HX
    Zhang, QB
    Luo, B
    Wei, S
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (06) : 701 - 710
  • [2] ON THE USES OF THE t-DISTRIBUTION IN MULTIVARIATE ANALYSIS
    Bhattacharyya, A.
    [J]. SANKHYA, 1952, 12 : 89 - 104
  • [3] Maximum Likelihood Estimation of Tobit Factor Analysis for Multivariate t-Distribution
    Zhou, Xingcai
    Tan, Changchun
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (01) : 1 - 16
  • [4] Robust Inference in the Capital Asset Pricing Model Using the Multivariate t-distribution
    Galea, Manuel
    Cademartori, David
    Curci, Roberto
    Molina, Alonso
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (06)
  • [5] Robust Curve Clustering Based on a Multivariate t-Distribution Model
    Wang, Zhi Min
    Song, Qing
    Soh, Yeng Chai
    Sim, Kang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (12): : 1976 - 1984
  • [6] Addressing non-normality in multivariate analysis using the t-distribution
    Felipe Osorio
    Manuel Galea
    Claudio Henríquez
    Reinaldo Arellano-Valle
    [J]. AStA Advances in Statistical Analysis, 2023, 107 : 785 - 813
  • [7] Addressing non-normality in multivariate analysis using the t-distribution
    Osorio, Felipe
    Galea, Manuel
    Henriquez, Claudio
    Arellano-Valle, Reinaldo
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 785 - 813
  • [8] Multivariate skew t-distribution
    Gupta, AK
    [J]. STATISTICS, 2003, 37 (04) : 359 - 363
  • [9] Robust mixture regression using the t-distribution
    Yao, Weixin
    Wei, Yan
    Yu, Chun
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 116 - 127
  • [10] ROBUST STATISTICAL MODELING USING THE T-DISTRIBUTION
    LANGE, KL
    LITTLE, RJA
    TAYLOR, JMG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) : 881 - 896