A Spatio-Temporal Motion Network for Action Recognition Based on Spatial Attention

被引:8
|
作者
Yang, Qi [1 ,2 ]
Lu, Tongwei [1 ,2 ]
Zhou, Huabing [1 ,2 ]
机构
[1] Wuhan Inst Technol, Sch Comp Sci & Engn, Wuhan 430205, Peoples R China
[2] Wuhan Inst Technol, Hubei Key Lab Intelligent Robot, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
temporal modeling; spatio-temporal motion; group convolution; spatial attention;
D O I
10.3390/e24030368
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Temporal modeling is the key for action recognition in videos, but traditional 2D CNNs do not capture temporal relationships well. 3D CNNs can achieve good performance, but are computationally intensive and not well practiced on existing devices. Based on these problems, we design a generic and effective module called spatio-temporal motion network (SMNet). SMNet maintains the complexity of 2D and reduces the computational effort of the algorithm while achieving performance comparable to 3D CNNs. SMNet contains a spatio-temporal excitation module (SE) and a motion excitation module (ME). The SE module uses group convolution to fuse temporal information to reduce the number of parameters in the network, and uses spatial attention to extract spatial information. The ME module uses the difference between adjacent frames to extract feature-level motion patterns between adjacent frames, which can effectively encode motion features and help identify actions efficiently. We use ResNet-50 as the backbone network and insert SMNet into the residual blocks to form a simple and effective action network. The experiment results on three datasets, namely Something-Something V1, Something-Something V2, and Kinetics-400, show that it out performs state-of-the-arts motion recognition networks.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [21] SiamMAST: Siamese motion-aware spatio-temporal network for video action recognition
    Lu, Xuemin
    Quan, Wei
    Marek, Reformat
    Zhao, Haiquan
    Chen, Jim X. X.
    VISUAL COMPUTER, 2024, 40 (05): : 3163 - 3181
  • [22] SiamMAST: Siamese motion-aware spatio-temporal network for video action recognition
    Xuemin Lu
    Wei Quan
    Reformat Marek
    Haiquan Zhao
    Jim X. Chen
    The Visual Computer, 2024, 40 : 3163 - 3181
  • [23] Spatio-Temporal Adaptive Network With Bidirectional Temporal Difference for Action Recognition
    Li, Zhilei
    Li, Jun
    Ma, Yuqing
    Wang, Rui
    Shi, Zhiping
    Ding, Yifu
    Liu, Xianglong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 5174 - 5185
  • [24] Human action recognition in immersive virtual reality based on multi-scale spatio-temporal attention network
    Xiao, Zhiyong
    Chen, Yukun
    Zhou, Xinlei
    He, Mingwei
    Liu, Li
    Yu, Feng
    Jiang, Minghua
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2024, 35 (05)
  • [25] Human Action Recognition via Spatio-temporal Dual Network Flow and Visual Attention Fusion
    Liu Tianliang
    Qiao Qingwei
    Wan Junwei
    Dai Xiubin
    Luo Jiebo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (10) : 2395 - 2401
  • [26] SPATIO-TEMPORAL MOTION AGGREGATION NETWORK FOR VIDEO ACTION DETECTION
    Zhang, Hongcheng
    Zhao, Xu
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2180 - 2184
  • [27] Action Recognition With Spatio-Temporal Visual Attention on Skeleton Image Sequences
    Yang, Zhengyuan
    Li, Yuncheng
    Yang, Jianchao
    Luo, Jiebo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (08) : 2405 - 2415
  • [28] ESTI: an action recognition network with enhanced spatio-temporal information
    ZhiYu Jiang
    Yi Zhang
    Shu Hu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3059 - 3070
  • [29] A Spatio-Temporal Convolutional Neural Network for Skeletal Action Recognition
    Hu, Lizhang
    Xu, Jinhua
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 377 - 385
  • [30] ESTI: an action recognition network with enhanced spatio-temporal information
    Jiang, ZhiYu
    Zhang, Yi
    Hu, Shu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3059 - 3070