On Grobner bases and Krull dimension of residue class rings of polynomial rings over integral domains

被引:0
|
作者
Francis, Maria [1 ]
Dukkipati, Ambedkar [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci Automat, Bangalore 560012, Karnataka, India
关键词
Grobner bases over commutative rings; Krull dimension of residue class rings of; polynomial rings over rings; Independent sets modulo an ideal; IDEALS;
D O I
10.1016/j.jsc.2017.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an ideal a in A[x(1),.... x(n)] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[xi,,.x(n)]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x(1),.... x(n)]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetherian rings. For a Noetherian integral domain A we introduce the notion of combinatorial dimension of A[x(1),.... x(n)]/a and give a Grobner basis method to compute it for residue class rings that have a free A-module representation w.r.t. a lexicographic ordering. For such A-algebras, we derive a relation between Krull dimension and combinatorial dimension of A[x(1),.... x(n)]/a. An immediate application of this relation is that it gives a uniform method, the first of its kind, to compute the dimension of A[x(1),.... x(n)]/a without having to consider individual properties of the ideal. For A-algebras that have a free A-module representation w.r.t degree compatible monomial orderings, we introduce the concepts of Hilbert function, Hilbert series and Hilbert polynomials and show that Grobner basis methods can be used to compute these quantities. We then proceed to show that the combinatorial dimension of such A-algebras is equal to the degree of the Hilbert polynomial. This enables us to extend the relation between Krull dimension and combinatorial dimension to A-algebras with a free A-module representation w.r.t. a degree compatible ordering as well. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [31] The Krull dimension of power series rings over non-SFT rings
    Kang, B. G.
    Loper, K. A.
    Lucas, T. G.
    Park, M. H.
    Toan, P. T.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (02) : 254 - 258
  • [32] GLOBAL DIMENSION OF RINGS WITH KRULL DIMENSION
    KOKER, JJ
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (10) : 2863 - 2876
  • [33] UNIFORM MODULES OVER SERIAL RINGS WITH KRULL DIMENSION
    WRIGHT, MH
    COMMUNICATIONS IN ALGEBRA, 1990, 18 (08) : 2541 - 2557
  • [34] Arithmetical rings and Krull dimension
    Tuganbaev, Askar A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2018, 28 (02): : 113 - 117
  • [35] SERIAL RINGS WITH KRULL DIMENSION
    CHATTERS, AW
    GLASGOW MATHEMATICAL JOURNAL, 1990, 32 : 71 - 78
  • [36] The Krull dimension in noetherian rings
    Ducos, Lionel
    JOURNAL OF ALGEBRA, 2009, 322 (04) : 1104 - 1128
  • [37] KRULL DIMENSION IN NONCOMMUTATIVE RINGS
    GORDON, R
    ROBSON, JC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A80 - &
  • [38] Grobner bases and alternant codes over Galois rings
    Byrne, E
    Fitzpatrick, P
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 448 - 448
  • [39] SOME RESULTS ON GROBNER BASES OVER COMMUTATIVE RINGS
    ADAMS, WW
    BOYLE, AK
    JOURNAL OF SYMBOLIC COMPUTATION, 1992, 13 (05) : 473 - 484
  • [40] Signature Grobner bases in free algebras over rings
    Hofstadler, Clemens
    Verron, Thibaut
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 298 - 306