On the accumulation sets of exponential rays

被引:1
|
作者
Fu, Jianxun [1 ]
Zhang, Gaofei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Qufu Normal Univ, Dept Math, Qufu 273165, Peoples R China
关键词
DYNAMIC RAYS; CONTINUA; POINTS;
D O I
10.1017/etds.2017.33
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there exist non-landing exponential rays with bounded accumulation sets. By introducing folding models of certain rays, we prove that each of the corresponding accumulation sets is an indecomposable continuum containing part of the ray, an indecomposable continuum disjoint from the ray or a Jordan arc.
引用
收藏
页码:370 / 391
页数:22
相关论文
共 50 条
  • [21] An Exponential Model for Damage Accumulation
    Balakrishnan, Narayanaswamy
    Castillo, Enrique
    Fernandez-Canteli, Alfonso
    Kateri, Maria
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (02) : 215 - 232
  • [22] Julia sets of certain exponential functions
    Niamsup, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 598 - 609
  • [23] Julia sets of random exponential maps
    Lech, Krzysztof
    FUNDAMENTA MATHEMATICAE, 2021, 255 (02) : 159 - 180
  • [24] AN EXPONENTIAL ENTROPY ON INTUITIONISTIC FUZZY SETS
    Tian, Dazeng
    Yang, Zhongtang
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 198 - 202
  • [25] LOCAL ASYMPTOTIC EXPONENTIAL SETS OF DISTRIBUTIONS
    IBRAGIMOV, IA
    KHASMINSKII, RZ
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (03): : 673 - 674
  • [26] EXPONENTIAL DIOPHANTINE REPRESENTATION OF ENUMERABLE SETS
    JONES, JP
    MATIJASEVIC, YV
    JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (04) : 1218 - 1218
  • [27] CONNECTED ESCAPING SETS OF EXPONENTIAL MAPS
    Rempe, Lasse
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) : 71 - 80
  • [28] EXPONENTIAL ENTROPY ON INTUITIONISTIC FUZZY SETS
    Verma, Rajkumar
    Sharma, Bhu Dev
    KYBERNETIKA, 2013, 49 (01) : 114 - 127
  • [29] AN EXPONENTIAL ENTROPY ON INTUITIONISTIC FUZZY SETS
    Tian, Da-Zeng
    Yang, Zhong-Tang
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2014, : 235 - 240
  • [30] Hausdorff dimension of exponential parameter rays and their endpoints
    Bailesteanu, Mihai
    Balan, Horia Vlad
    Schleicher, Dierk
    NONLINEARITY, 2008, 21 (01) : 113 - 120