Four key challenges in infectious disease modelling using data from multiple sources

被引:45
|
作者
De Angelis, Daniela [1 ,2 ]
Presanis, Anne M. [1 ]
Birrell, Paul J. [1 ]
Tomba, Gianpaolo Scalia [3 ]
House, Thomas [4 ]
机构
[1] Cambridge Inst Publ Hlth, MRC, Biostat Unit, Cambridge CB2 OSR, England
[2] Publ Hlth England, London NW9 5HT, England
[3] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[4] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Evidence synthesis; Bayesian; Statistical inference; Multiple sources; Epidemics; Complex models; BAYESIAN COMPUTATION; A/H1N1; INFLUENZA; EPIDEMIC MODELS; MONTE-CARLO; DYNAMICS; ENGLAND; H1N1; INFERENCE; SEVERITY; HIV;
D O I
10.1016/j.epidem.2014.09.004
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Public health-related decision-making on policies aimed at controlling epidemics is increasingly evidence-based, exploiting multiple sources of data. Policy makers rely on complex models that are required to be robust, realistically approximating epidemics and consistent with all relevant data. Meeting these requirements in a statistically rigorous and defendable manner poses a number of challenging problems. How to weight evidence from different datasets and handle dependence between them, efficiently estimate and critically assess complex models are key challenges that we expound in this paper, using examples from influenza modelling. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [21] Gather data from multiple sources
    Hill, J
    JOURNAL OF FAMILY PRACTICE, 2004, 53 (05): : 416 - 416
  • [22] Scaling Data from Multiple Sources
    Enamorado, Ted
    Lopez-Moctezuma, Gabriel
    Ratkovic, Marc
    POLITICAL ANALYSIS, 2021, 29 (02) : 212 - 235
  • [23] Integration of data from multiple sources for simultaneous modelling analysis: experience from nevirapine population pharmacokinetics
    Svensson, Elin
    van der Walt, Jan-Stefan
    Barnes, Karen I.
    Cohen, Karen
    Kredo, Tamara
    Huitema, Alwin
    Nachega, Jean B.
    Karlsson, Mats O.
    Denti, Paolo
    BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2012, 74 (03) : 465 - 476
  • [24] Feature extraction from multiple data sources using genetic programming
    Szymanski, JJ
    Brumby, SP
    Pope, P
    Eads, D
    Esch-Mosher, D
    Galassi, M
    Harvey, NR
    McCulloch, HDW
    Perkins, SJ
    Porter, R
    Theiler, J
    Young, AC
    Bloch, JJ
    David, N
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 338 - 345
  • [25] Infectious disease challenges in immigrants from tropical countries
    Worley, CW
    Worley, KA
    Kumar, PL
    PEDIATRICS, 2000, 106 (01)
  • [26] Modelling total exposure to chemicals from multiple sources
    Tozer, Sarah Anne
    TOXICOLOGY LETTERS, 2016, 258 : S41 - S41
  • [27] Use of multiple classifiers in classification of data from multiple data sources
    Briem, GJ
    Benediktsson, JA
    Sveinsson, JR
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 882 - 884
  • [28] Review on mining data from multiple data sources
    Wang, Ruili
    Ji, Wanting
    Liu, Mingzhe
    Wang, Xun
    Weng, Jian
    Deng, Song
    Gao, Suying
    Yuan, Chang-an
    PATTERN RECOGNITION LETTERS, 2018, 109 : 120 - 128
  • [29] Infectious disease in cervids of north America - Data, models, and management challenges
    Conner, Mary Margaret
    Ebinger, Michael Ryan
    Blanchong, Julie Anne
    Cross, Paul Chafee
    YEAR IN ECOLOGY AND CONSERVATION BIOLOGY 2008, 2008, 1134 : 146 - 172
  • [30] Modelling the risk of airborne infectious disease using exhaled air
    Issarow, Chacha M.
    Mulder, Nicola
    Wood, Robin
    JOURNAL OF THEORETICAL BIOLOGY, 2015, 372 : 100 - 106