Four key challenges in infectious disease modelling using data from multiple sources

被引:45
|
作者
De Angelis, Daniela [1 ,2 ]
Presanis, Anne M. [1 ]
Birrell, Paul J. [1 ]
Tomba, Gianpaolo Scalia [3 ]
House, Thomas [4 ]
机构
[1] Cambridge Inst Publ Hlth, MRC, Biostat Unit, Cambridge CB2 OSR, England
[2] Publ Hlth England, London NW9 5HT, England
[3] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[4] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Evidence synthesis; Bayesian; Statistical inference; Multiple sources; Epidemics; Complex models; BAYESIAN COMPUTATION; A/H1N1; INFLUENZA; EPIDEMIC MODELS; MONTE-CARLO; DYNAMICS; ENGLAND; H1N1; INFERENCE; SEVERITY; HIV;
D O I
10.1016/j.epidem.2014.09.004
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Public health-related decision-making on policies aimed at controlling epidemics is increasingly evidence-based, exploiting multiple sources of data. Policy makers rely on complex models that are required to be robust, realistically approximating epidemics and consistent with all relevant data. Meeting these requirements in a statistically rigorous and defendable manner poses a number of challenging problems. How to weight evidence from different datasets and handle dependence between them, efficiently estimate and critically assess complex models are key challenges that we expound in this paper, using examples from influenza modelling. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [1] Challenges in Modelling Infectious Disease Dynamics: Preface
    Lloyd-Smith, James O.
    Mollison, Denis
    Metcalf, C. Jessica E.
    Klepac, Petra
    Heesterbeek, J. A. P.
    EPIDEMICS, 2015, 10 : III - IV
  • [2] Marine reserve spillover: Modelling from multiple data sources
    Bellier, Edwige
    Neubauer, Philipp
    Monestiez, Pascal
    Letourneur, Yves
    Ledireach, Laurence
    Bonhomme, Patrick
    Bachet, Frederic
    ECOLOGICAL INFORMATICS, 2013, 18 : 188 - 193
  • [3] Challenges and Perspectives of Open Data in Modelling Infectious Diseases
    Branda, Francesco
    Lodi, Giorgia
    DATA, 2023, 8 (02)
  • [4] Using Surveillance Data to Estimate Infectious Disease Burden: Opportunities and Challenges
    Hochheiser, Harry
    Kumar, Praveen
    AMERICAN JOURNAL OF PUBLIC HEALTH, 2025, 115 (04) : 454 - 456
  • [5] Four key challenges in the open-data revolution
    Salguero-Gomez, Roberto
    Jackson, John
    Gascoigne, Samuel J. L.
    JOURNAL OF ANIMAL ECOLOGY, 2021, 90 (09) : 2000 - 2004
  • [6] Multivariate modelling of infectious disease surveillance data
    Paul, M.
    Held, L.
    Toschke, A. M.
    STATISTICS IN MEDICINE, 2008, 27 (29) : 6250 - 6267
  • [7] 'RISDM': species distribution modelling from multiple data sources in R
    Foster, Scott D.
    Peel, David
    Hosack, Geoffrey R.
    Hoskins, Andrew
    Mitchell, David J.
    Proft, Kirstin
    Yang, Wen-Hsi
    Uribe-Rivera, David E.
    Froese, Jens G.
    ECOGRAPHY, 2024, 2024 (06)
  • [8] DATA QUALITY IN THE INTEGRATION AND ANALYSIS OF DATA FROM MULTIPLE SOURCES: SOME RESEARCH CHALLENGES
    Harding, J. L.
    8TH INTERNATIONAL SYMPOSIUM ON SPATIAL DATA QUALITY, 2013, 40-2 (w1): : 59 - 63
  • [9] Surveying and modelling the Main Spire of milan Cathedral using multiple data sources
    Fassi, Francesco
    Achille, Cristiana
    Fregonese, Luigi
    PHOTOGRAMMETRIC RECORD, 2011, 26 (136): : 462 - 487
  • [10] Integrating freshwater biodiversity data sources: Key challenges and opportunities
    Jarvis, Susan G.
    Mackay, Eleanor B.
    Risser, Hannah A.
    Feuchtmayr, Heidrun
    Fry, Matthew
    Isaac, Nick J. B.
    Thackeray, Stephen J.
    Henrys, Peter A.
    FRESHWATER BIOLOGY, 2023, 68 (09) : 1479 - 1488