Compact mid-IR breath analysis system

被引:2
|
作者
Pushkarsky, Michael [1 ]
Weida, Miles [1 ]
Day, Timothy [1 ]
Arnone, David [1 ]
Pritchett, Russ [1 ]
机构
[1] Daylight Sol Inc, Poway, CA 92064 USA
关键词
D O I
10.1109/ICSENS.2007.4388325
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Daylight Solutions is developing broadly tunable, external cavity quantum cascade lasers (EC-QCLs) for gas sensing instrumentation for numerous markets including medical breath analysis. Progress in two specific areas of development will be discussed: (i) miniaturization of a fast tunable, moderate resolution, pulsed EC-QCL and (ii) demonstration of a EC-QCL acetone sensor capable of breath acetone detection at the required low levels. Recent efforts at Daylight Solutions yielded the world's first miniature room temperature EC-QCLs comprising of a 15 mm long optical cavity, custom collimating optics, miniature grating tuning mechanism and integrated current and temperature controls. The laser can operate anywhere in the 4.5 - 10.5 micron spectral region with a scanning range of over 100 wavenumbers. The spectral resolution is better than 1 wavenumber and the scanning rate is faster than 1 second. In addition to the relative simplicity and ruggedness of the optomechanical design, the laser also features low average power consumption, does not require precise current and temperature control, and can operate at room temperature with convective cooling. The prototype EC-QCL acetone sensor operating in 8 micron spectral range combined with Daylight Solutions' optimized IR detector together with a custom data acquisition system have shown a sensitivity of <100 PPB level of acetone, an important breath biomarker using single breath resolved absorption spectroscopy. The measurement approach, sensitivity, and selectivity in presence of other breath constituents,will be discussed.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [21] Compact Mid-IR Isolator Using Nonreciprocal Magnetoplasmonic InSb Mirror
    Stepanenko, O.
    Horak, T.
    Chochol, J.
    Postava, K.
    Lampin, J. -F.
    Vanwolleghem, M.
    2016 41ST INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2016,
  • [22] Analysis of mid-IR InP-based QCLs for application in FSO system
    Pierscinski, Kamil
    Pierscinska, Dorota
    Sobczak, Grzegorz
    Mikolajczyk, Janusz
    Janus, Kamil
    Gutowski, Piotr
    Bielecki, Zbigniew
    Bugajski, Maciej
    PRZEGLAD ELEKTROTECHNICZNY, 2018, 94 (09): : 1 - 9
  • [23] Monolithic mid-IR array
    Oliver Graydon
    Nature Photonics, 2018, 12 : 58 - 58
  • [24] Optimization of mid-IR Photothermal Imaging for Tissue Analysis
    Totachawattana, Atcha
    Erramilli, Shyamsunder
    Sander, Michelle Y.
    ULTRAFAST NONLINEAR IMAGING AND SPECTROSCOPY III, 2015, 9584
  • [25] Compact mid-IR source based on a DFB diode, fiber amplifier, and PPLN
    Mel'nikov, Igor V.
    Machnev, Andrey A.
    Novozhylov, Pavel B.
    Poimanov, Andrey A.
    Postnikova, Marina Yu.
    FIBER LASERS X: TECHNOLOGY, SYSTEMS, AND APPLICATIONS, 2013, 8601
  • [26] Characterizing Quasars in the Mid-IR
    Hill, Allison R.
    Gallagher, S. C.
    Deo, R. P.
    AGN WINDS IN CHARLESTON, 2012, 460 : 126 - 127
  • [27] Spectral Analysis of Mid-IR Excesses of White Dwarfs
    Bilikova, Jana
    Chu, You-Hua
    Su, Kate
    Gruendl, Robert A.
    Rauch, Thomas
    PLANETARY SYSTEMS BEYOND THE MAIN SEQUENCE, 2011, 1331 : 215 - +
  • [28] Mid-IR optoacoustic microscopy
    Rita Strack
    Nature Methods, 2020, 17 : 251 - 251
  • [29] Mid-IR devices and materials
    Haywood, S
    IEE PROCEEDINGS-OPTOELECTRONICS, 1998, 145 (05): : 253 - 253
  • [30] Mid-IR Colloidal Nanocrystals
    Lhuillier, E.
    Keuleyan, S.
    Liu, H.
    Guyot-Sionnest, P.
    CHEMISTRY OF MATERIALS, 2013, 25 (08) : 1272 - 1282