Graded semisimple algebras are symmetric

被引:1
|
作者
Dascalescu, S. [1 ,2 ]
Nastasescu, C. [1 ,3 ]
Nastasescu, L. [1 ,3 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
[2] Univ Bucharest, ICUB, Bucharest, Romania
[3] Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
关键词
Graded algebra; Frobenius algebra; Symmetric algebra; Graded division algebra; Crossed product; Graded semisimple algebra; FROBENIUS ALGEBRAS;
D O I
10.1016/j.jalgebra.2017.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graded symmetric algebras, which are the symmetric monoids in the monoidal category of vector spaces graded by a group. We show that a finite dimensional graded semisimple algebra is graded symmetric. The center of a symmetric algebra is not necessarily symmetric, but we prove that the center of a finite dimensional graded division algebra is symmetric, provided that the order of the grading group is not divisible by the characteristic of the base field. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [1] SEMISIMPLE GRADED LIE-ALGEBRAS
    PAIS, A
    RITTENBERG, V
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) : 2062 - 2073
  • [2] Exact and semisimple differential graded algebras
    Aldrich, ST
    Rozas, JRG
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) : 1053 - 1075
  • [3] Abelian extensions of semisimple graded CR algebras
    Altomani, A
    Nacinovich, M
    ADVANCES IN GEOMETRY, 2004, 4 (04) : 433 - 457
  • [4] ON GRADED SYMMETRIC CELLULAR ALGEBRAS
    Li, Yanbo
    Zhao, Deke
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (03) : 349 - 362
  • [5] Symmetric identities in graded algebras
    Y.A. Bahturin
    A. Giambruno
    M.V. Zaicev
    Archiv der Mathematik, 1997, 69 : 461 - 464
  • [6] Symmetric identities in graded algebras
    Bahturin, YA
    Giambruno, A
    Zaicev, MV
    ARCHIV DER MATHEMATIK, 1997, 69 (06) : 461 - 464
  • [7] TENSORIAL STRUCTURES ASSOCIATED WITH SEMISIMPLE GRADED LIE ALGEBRAS
    Martin Mendez, A.
    Torres Lopera, J. F.
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (01): : 61 - 77
  • [8] VALUE FUNCTIONS AND ASSOCIATED GRADED RINGS FOR SEMISIMPLE ALGEBRAS
    Tignol, J. -P.
    Wadsworth, A. R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (02) : 687 - 726
  • [9] Orbits in real Zm-graded semisimple Lie algebras
    Hong Van Le
    JOURNAL OF LIE THEORY, 2011, 21 (02) : 285 - 305
  • [10] Semisimple elements and the little Weyl group of real semisimple Zm-graded Lie algebras
    de Graaf, Willem
    Le, Hong Van
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 703 : 423 - 445