In this paper we provide a classification theorem and a structure theorem for exact differential graded algebras, and we use the classification theorem to show that a differential graded algebra A is semisimple (as a differential graded algebra) precisely when the graded algebra Z(A) is semisimple (as a graded algebra) and A is an exact complex. We also relate exact differential graded algebras with a graded version of Hochschild cohomology.
机构:
Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Univ Bucharest, ICUB, Bucharest, RomaniaUniv Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Dascalescu, S.
Nastasescu, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, RomaniaUniv Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Nastasescu, C.
Nastasescu, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, RomaniaUniv Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
机构:
Univ Santiago de Compostela, Dept Xeometre & Topoloxia, Fac Matemat, Santiago De Compostela 15706, La Coruna, SpainUniv Vigo, Dept Matemat Aplicada 2, ETSI Telecomunicac, Vigo 36310, Pontevedra, Spain