Exact and semisimple differential graded algebras

被引:3
|
作者
Aldrich, ST [1 ]
Rozas, JRG
机构
[1] St Marys Univ, Dept Math & Stat, Winona, MN 55987 USA
[2] Univ Almeria, Dept Algebra & Anal, Almeria 04120, Spain
关键词
D O I
10.1080/00927870209342371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide a classification theorem and a structure theorem for exact differential graded algebras, and we use the classification theorem to show that a differential graded algebra A is semisimple (as a differential graded algebra) precisely when the graded algebra Z(A) is semisimple (as a graded algebra) and A is an exact complex. We also relate exact differential graded algebras with a graded version of Hochschild cohomology.
引用
收藏
页码:1053 / 1075
页数:23
相关论文
共 50 条
  • [1] Graded semisimple algebras are symmetric
    Dascalescu, S.
    Nastasescu, C.
    Nastasescu, L.
    JOURNAL OF ALGEBRA, 2017, 491 : 207 - 218
  • [2] SEMISIMPLE GRADED LIE-ALGEBRAS
    PAIS, A
    RITTENBERG, V
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) : 2062 - 2073
  • [3] Abelian extensions of semisimple graded CR algebras
    Altomani, A
    Nacinovich, M
    ADVANCES IN GEOMETRY, 2004, 4 (04) : 433 - 457
  • [4] Semisimple Lie algebras of differential operators
    Richter, DA
    ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (01) : 41 - 65
  • [5] Semisimple Lie Algebras of Differential Operators
    David A. Richter
    Acta Applicandae Mathematica, 2001, 66 : 41 - 65
  • [6] TENSORIAL STRUCTURES ASSOCIATED WITH SEMISIMPLE GRADED LIE ALGEBRAS
    Martin Mendez, A.
    Torres Lopera, J. F.
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (01): : 61 - 77
  • [7] VALUE FUNCTIONS AND ASSOCIATED GRADED RINGS FOR SEMISIMPLE ALGEBRAS
    Tignol, J. -P.
    Wadsworth, A. R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (02) : 687 - 726
  • [8] Graded algebras and their differential graded extensions
    Piontkovski D.
    Journal of Mathematical Sciences, 2007, 142 (4) : 2267 - 2301
  • [9] Orbits in real Zm-graded semisimple Lie algebras
    Hong Van Le
    JOURNAL OF LIE THEORY, 2011, 21 (02) : 285 - 305
  • [10] Semisimple elements and the little Weyl group of real semisimple Zm-graded Lie algebras
    de Graaf, Willem
    Le, Hong Van
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 703 : 423 - 445