Predicting ADHD Risk from Touch Interaction Data

被引:9
|
作者
Mock, Philipp [1 ]
Tibus, Maike [2 ]
Ehlis, Ann-Christine [3 ]
Baayen, Harald [4 ]
Gerjets, Peter [1 ]
机构
[1] Leibniz Inst Wissensmedien, Tubingen, Germany
[2] Univ Tubingen, Hector Res Inst Educ Sci, Tubingen, Germany
[3] Univ Hosp Tubingen, Dept Psychiat & Psychotherapy, Tubingen, Germany
[4] Univ Tubingen, Dept Linguist, Tubingen, Germany
关键词
Multi-Touch; Machine-Learning; User Modeling; ADHD; ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; CHILDREN; DIAGNOSIS;
D O I
10.1145/3242969.3242986
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel approach for automatic prediction of risk of ADHD in schoolchildren based on touch interaction data. We performed a study with 129 fourth-grade students solving math problems on a multiple-choice interface to obtain a large dataset of touch trajectories. Using Support Vector Machines, we analyzed the predictive power of such data for ADHD scales. For regression of overall ADHD scores, we achieve a mean squared error of 0.0962 on a four-point scale (R-2 = 0.5667). Classification accuracy for increased ADHD risk (upper vs. lower third of collected scores) is 91.1%.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条
  • [41] Inferring Touch from Motion in Real World Data
    Bissig, Pascal
    Brandes, Philipp
    Passerini, Jonas
    Wattenhofer, Roger
    FOUNDATIONS AND PRACTICE OF SECURITY (FPS 2015), 2016, 9482 : 50 - 65
  • [42] Integration Strategies of Pen Interaction and Touch Interaction
    Li Y.
    Yang H.
    Xin Y.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (12): : 2186 - 2196
  • [43] Effect of the Quality of the Interaction Data on Predicting Protein Function from Protein-protein Interactions
    Ni, Qing-Shan
    Wang, Zheng-Zhi
    Li, Gang-Guo
    Wang, Guang-Yun
    Zhao, Ying-Jie
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2009, 1 (01) : 40 - 45
  • [44] Predicting Co-occurring Emotions from Eye-Tracking and Interaction Data in MetaTutor
    Lalle, Sebastien
    Murali, Rohit
    Conati, Cristina
    Azevedo, Roger
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2021), PT I, 2021, 12748 : 241 - 254
  • [45] Effect of the quality of the interaction data on predicting protein function from protein-protein interactions
    Qing-Shan Ni
    Zheng-Zhi Wang
    Gang-Guo Li
    Guang-Yun Wang
    Ying-Jie Zhao
    Interdisciplinary Sciences: Computational Life Sciences, 2009, 1 : 40 - 45
  • [46] Orientation Responsive Touch Interaction
    Kim, Jinwook
    Ahn, Jong-gil
    Ko, Heedong
    HUMAN-COMPUTER INTERACTION, PT II: NOVEL INTERACTION METHODS AND TECHNIQUES, 2009, 5611 : 461 - 469
  • [47] Predicting Depression Risk in Adolescents From Multimodal Data: Current Evidence and Future Directions
    Ho, Tiffany C.
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2022, 7 (04) : 346 - 348
  • [48] Predicting SMEs' default risk: Evidence from bank-firm relationship data
    Modina, Michele
    Pietrovito, Filomena
    Gallucci, Carmen
    Formisano, Vincenzo
    QUARTERLY REVIEW OF ECONOMICS AND FINANCE, 2023, 89 : 254 - 268
  • [49] Predicting Health Care Risk with Big Data Drawn from Clinical Physiological Parameters
    Wei, Honghao
    Yang, Yang
    Chen, Huan
    Xu, Bin
    Li, Jian
    Jiang, Miao
    Lu, Aiping
    SOCIAL MEDIA PROCESSING, 2014, 489 : 88 - 98
  • [50] Ergonomic Interaction on Touch Floors
    Schmidt, Dominik
    Frohnhofen, Johannes
    Knebel, Sven
    Meinel, Florian
    Perchyk, Mariya
    Risch, Julian
    Striebel, Jonathan
    Wachtel, Julia
    Baudisch, Patrick
    CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2015, : 3879 - 3888